新型电动汽车锂电池管理系统的研究与实现----系统的总体设计(二)
3.4单总线系统简介及温度测量方法
3.4.1概述
美国Dallas公司近年来推出了单总线技术及相应的集成芯片,它的一系列电池管理芯片能方便地组成分布式管理系统,极大地减轻了系统布线,从而提高系统可靠性和抗干扰性,满足电动车多点测量的要求。
单总线技术是只有一个总线命令者和一个或多个从器件组成的计算机应用系统,总线命令者通常是PC机或单片机,系统由硬件配置、处理次序和单总线信号三部分组成。系统按照单总线协议规定的时序和信号波形进行初始化、识别器件和进行数据交换。
单总线技术可用于环境状态检测系统、实时气象检测系统(自动气象站)、仓库监控系统、楼宇监管系统、停车收费、考勤管理等。应用中主控计算机根据要求,既可以采用PC机也可以采用单片机。
3.4.2硬件配置
单总线系统定义了一根信号线,总线上的每个器件都能够在合适的时间驱动它,相当于把计算机的地址线、数据线、控制线合为一根信号线对外进行数据交换。为了区分这些芯片,厂家在生产每个芯片时,都编制了唯一的序列号,通过寻址读出序列号码,就能把芯片识别出来。这样就能使这些器件挂在一根信号线上进行码分多址、串行分时数据交换,组成一个自动测控系统或自动收费系统,甚至还可以用单总线组成一个微型局域网。
厂家对每个芯片用激光刻录一个64位二进制ROM代码。从最低位开始,前8位是族码,表示产品的分类编号;接着的48位是一个唯一的序列号;最后8位是前56位的CRC校验码。CRC(Cyclic Redundancy Check)称为循环冗余码检测,是数据通信中校验数据传输是否正确的一种方法。在使用时,总线命令者读入ROM中64位二进制码后,将前56位按CRC多项式(这里是X8+X5+X4+1)计算出CRC值,然后同ROM中高8位的CRC值比较,若相同则表明数据传输正确,否则要求重传。48位序列号是一个15位的十进制编码,这么长的编码完全可为每个芯片编制一个全世界唯一的号码,也称为身份证号,可以被寻址识别出来。此外,芯片内还含有收发控制和电源存储电路,其示意图如图3.5。
这些芯片采用CMOS技术,耗电量都很小(空闲时几μW,工作时几mW),故一般不用另附电源。单总线上通常处于高电位(5V左右),每个器件都能在需要时驱动它。因此,挂在总线上的每个器件必需是漏极开路或者是三态输出的,这样,不工作时不会给总线增加功耗。
单总线的数据传输有两种模式,通常以16.3kb/s的速度通信,超速模式可达142kb/s.因此,只能用于对速度要求不高的场合,一般用于100kb/s以下速度的测控或数据交换系统中。
以上内容是单总线技术协议所要求的,各种芯片都具备这些基本内容,系统首先识别器件号,确认后才进入某种具体芯片功能,如A/D转换器、温度计等。
单总线同单片机的最简单接口如图3.6,
根据单总线器件手册,单总线技术作用距离在单片机I/O直接驱动下可达200m,经扩展可达1000m以上,允许挂上百个器件,能满足一般测控系统要求。
3.4.3处理时序
处理时序是软件设计的任务。在单总线系统中,软件设计是技术的关键,简洁的硬件配置是依靠复杂的软件来支撑的。在PC机作为主控机时,单总线软件设计基于Dallas公司授权的软件开发商提供的成套开发工具,为软件开发应用带来很大的便利。而用单片机作为主控机时,得由自己依据单总线协议,用汇编语言和C语言来编写全部软件,给开发应用增加了一定难度。
处理时序保证数据可靠的传送,任何时刻单总线上只能有一个控制信号或数据。每次操作时,一般有以下四个过程:
①初始化;
②传送ROM命令;
③传送RAM命令;
④数据交换。
单总线上所有处理都从初始化开始。初始化时序由总线命令者发出的复位脉冲和一个或多个从器件发出的应答脉冲组成。"应答脉冲"是从器件让总线命令者知道该器件是在总线上,并已经准备好接收命令开始工作。
当总线命令者检测到某器件的存在,就会发出传送ROM功能命令,它用来选择某个或一些从器件,同他们建立握手信号,以便同它进行具体功能操作。单总线协议规定其层次结构如图3.7.
单总线命令者首先必须发送7个ROM功能命令中的一个命令:
①读ROM(总线上只有一个器件时,如读DS2401的序列号);
②匹配ROM(总线上有多个器件时,寻址某个器件);
③查找ROM(系统首次启动后,须识别总线上各器件);
④跳过ROM(总线上只有一个器件时,可跳过读ROM命令直接向器件发送命令,以节省时间);
⑤超速匹配ROM(超速模式下寻址某个器件);
⑥超速跳过ROM(超速模式下跳过读ROM命令);
⑦条件查找ROM(只查找输入电压超
- 电动汽车:颠覆性的快速充电与非接触充电技术(09-20)
- 电动汽车的基本概述及重要组成(10-28)
- 矢量控制变频器在混合动力电动汽车中的应用(01-27)
- 基于CAN总线的电动汽车控制系统设计(05-25)
- 电动汽车驱动系统中的超级电容原理(05-21)
- 动力电池管理系统硬件设计技术(05-30)