微波EDA网,见证研发工程师的成长!
首页 > 应用设计 > 汽车电子 > 基于无线传感器网络的公交车载节点定位算法研究

基于无线传感器网络的公交车载节点定位算法研究

时间:08-19 来源:3721RD 点击:

3 组合定位算法的验证

为了验证上述组合算法的有效性,利用MATLAB对上述算法进行了仿真。TOF及RSSI的测距误差按式(1)、式(2)的误差模型进行设置;里程仪的刻度系数误差设为1%,里程仪的初始偏差设为16 m。
图6(a)为模拟车载节点离开固定节点时利用RSSI修正里程仪误差结果。从图中可以看出,利用RSSI估计并修正里程仪测距误差的效果十分明显。

将TOF测距值与对应里程仪测距值的差值序列进行一阶线性拟合,可求解刻度系数误差和里程仪偏差,并对里程仪数据进行修正。仿真中静态校正法采用0 m~200 m的差值序列进行里程仪误差的补偿,结果如图6(b)所示。动态校正法实时使用修正点前,200 m的差值序列进行里程仪误差的补偿,结果如图6(c)所示。两种算法结果都表明:TOF校正后的里程仪测距精度远高于TOF和里程仪自身的测距精度。

表1中汇集了其中5次的仿真结果。其中,组合算法1包含了RSSI校正和静态TOF校正,组合算法2包含了RSSI校正和动态TOF校正。

由表1可知,基于TOF/RSSI的公交车载节点组合定位算法定位效果优于三种独立的测距定位方法,定位标准差小于5 m(与GPS定位精度相当)。组合算法1定位标准差优于组合算法2;组合算法2的鲁棒性要强于组合算法1,但其计算量较大。两种组合算法均在一定程度上改善了TOF测距误差波动大、RSSI远程测距误差大、里程仪测距在车辆非直线行驶时定位误差大的缺点。
本文对基于无线传感器网络的车载节点定位方法进行了研究,测试分析了新型的TOF无线传感器芯片JN5148的测距效果,研究了固定节点分布对车辆定位的影响,提出了基于TOF/RSSI及车辆里程仪的组合车辆定位算法,并讨论了静态和动态两种TOF误差修正模式。仿真结果表明,组合定位算法精度能够满足实际应用要求,结合无线传感器网络本身的良好通信能力,有助于经济地实现公交系统智能化改造,具有较好的应用参考价值。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top