基于Zigbee的智能车运行状态实时监控系统设计
0 引言
智能车又称轮式机器人,是集传感器、计算机、自动控制、通信以及机械等技术于一身的综合系统。在智能车的设计和制作过程中,控制算法调试是一个极其重要而又关键的环节,面临着许多急需解决的问题:智能车能否按照事先设计的思路运行;控制策略是否符合实际需求;运行中出现问题时,智能车的各项实时参数是什么。针对这些问题,许多学者提出了基于仿真的解决方案。有学者提出基于参数化的机械系统几何模型,使用拉格朗日方法建立系统动力学方程,来对虚拟机械系统进行动力学分析。但由于车辆机械结构的复杂性,这种建模和仿真方式过于繁琐,影响了仿真和研究的效率。清华大学针对全国大学生智能车竞赛开发的PlaSTid仿真平台,其动力学模型虽然较为简单,但该模型是一种理想化的模型,对于影响智能车运行状况的一些参数的考虑较少,例如小车与路面之间的摩擦系数、小车的机械性能等因素,因而仿真结果与实际存在一定差距。有学者提出一种智能车硬件在环仿真系统,该仿真系统发挥了硬件在环的长处。但该软件仍以虚拟仿真平台LabVIEW为基础,控制算法的分析和决策在上位机上运行,脱离了车模实体的软件运行环境,其仿真结果与实际也存在一定的差距,因此其应用有相当的局限性。
笔者设计了一种基于无线通信技术的智能车运行状态实时监控系统。该系统以车模为实验主体,车载控制器完成智能车的数据采集、分析、决策等。上位机通过无线通信技术获得车模的各项运行参数,监控车模的运行状态。
1 系统总体设计
1.1 Zigbee技术分析
Zigbee技术是一种近距离、低功率、低成本的双向无线通信技术[5-6],工作频段为全球通用频段2.4 GHz,数据传输速率为10~250 kbit/s,免执照。Zigbee协议由应用层、网络层、数据链路层和物理层组成,其中物理层和链路层遵循IEEE802.15.4协议。一个Zigbee网络支持255个设备;采用先进的AES128加密算法,提供数据完整性检查;具有载波侦听多路访问、冲突检测(CSMA/CA)方式,有很好的兼容性。Zigbee定义了3种类型的节点设备,分别是协调器、路由设备(FFD)和终端设备(RFD)。
Zigbee网络由这3种设备组成,但必须包括1个协调器,而且只能有1个协调器。协调器是整个网络的中心,它负责网络的组建、网络节点的管理、网络节点信息的储存,寻找节点之间的路由消息,不断地接收信息。路由设备也担当着协调器的作用,负责其他的路由器或终端设备入网,拓展网络范围;终端设备是实现具体功能的单元[7].Zigbee网络可以实现星型、树型和网状型多种拓扑结构。
赫立讯公司的IP-Link产品是集射频收发器、微处理器、多拓扑网络功能于一体的无线通信模块。
IP-Link1200 模块内含AVR 微处理器,符合开放IEEE802.15.4协议的2.4 GHz免执照ISM频段的射频收发器,可以组成任意的网络拓朴。因此,IP-Link1200是一款完全满足智能车测控系统要求的无线通信模块。
1.2 监控系统的组成结构
为了能对多个智能车的运行状态实行在线监控,系统采用星形拓扑结构。该系统的网络节点分为协调器节点和终端节点,其中协调器与上位机相连,终端节点嵌入智能车。
上位机(即PC 机)与下位机(智能车)采用无线通信。下位机采集智能车的行驶速度以及路况信息,判断智能车的行驶方向,并计算出下一步的行动数据。同时,下位机将采集的各项数据以及下一步的行动数据发给上位机,使得调试人员可以在上位机上观察小车当前的行驶参数以及对应的小车行驶状态。因此,上位机与下位机之间的通信方式是上位机首先向下位机发送通信指令,然后接收下位机发送来的小车运行状态信息。上位机对信息保存、显示、修正,并将修正的参数发送到下位机。
2 系统硬件设计
智能车以MC9S12XS128单片机为主控芯片,该芯片拥有丰富的内部资源。利用单片机的脉宽调制模块对智能车的舵机和电机进行驱动,2路PWM通道作为舵机角度控制,1路PWM通道用于电机的转速控制;利用单片机的捕捉定时功能和A/D转换模块采集道路信号。
单片机与IP-Link1200的连接比较简单方便。IP-Link1200的RXD可直接与单片机的SCI串行口发送端TXD相连接,TXD与单片机串行口接收端RXD相连接,RESET端接单片机的PE1口,通过PE1初始化IP-Link1200,即通过PE1输出10 ms的负脉冲。下位机电路图如图1所示。
图1 下位机电路图
IP-Link1200与PC相连接时必须经过电平转换,将TTL电平转换为RS-232C电平,用1片MAX232 芯片便可以完成该转换。IP-Link1200的RESET端接在复位电路上,该电路在上电时使IP-Link1200复位或按RST按钮使IP-Link1200复位。上位机电路图如
- 基于ZigBee的汽车轮胎压力实时监测系统设计(10-13)
- 基于C8051F和Zigbee无线网络的汽车测试系统设计(07-03)
- 经典射频收发芯片CC1100在TPMS中的应用(07-19)
- 基于C8051F的Zigbee无线网络的汽车测试系统设计(08-26)
- 基于ZigBee的疲劳驾驶警示系统的研究与设计 (11-09)
- 基于ZigBee技术的疲劳监测警示系统(01-18)