基于Freescale单片机的电子控制空气悬架模糊PID控制
差e和误差变化率de之间的关系[3]。
用车身垂直加速度均方根及其变化率为模糊输入语言变量e和de,系数u为输出语言变量。三个变量均模糊划分为7个模糊子集{NB,NM,NS,NULL,PS,PM,PB},构建一个二维模糊控制器,综合车身垂直加速度均方根、均方根变化量以及路面扰动输入的情况,定义两个输入变量的基本论域分别是(0,0.6)和(-60,60),相应的模糊论域均为(-3,3),模糊输出论域为(-0.4,0.4),三个变量的隶属度函数均采用三角形函数。
下面设计u的模糊控制规则表。确定控制量变化的原则是:当误差大或小时,选择控制量以尽快消除误差为主;而当误差较小时,选择控制量要注意防止超调,以系统的稳定性为主要出发点。误差为正时与误差为负时相类似,相应的符号都要变化。因此,按模糊控制原理设计出u的模糊调整规则如表1所示。
2.3 软件设计和控制算法实现
单片机的软件采用C语言编写,软件的整体结构采用模块化的方式,总流程如图6所示。主要的子程序有高度数据综合、通信信息处理、控制信号生成等。捕捉检测主要是对车速检测中断子程序、高度检测中断子程序、加速度检测中断子程序和通信中断子程序进行检测。辅助开关输入检测主要是对车速、制动、点火、车门状态信号的检测,操作开关检测主要是对手动模式下按键信号的检测。刚度的模糊PID控制的子程序如图7所示。
3 仿真分析
利用MATLAB[4]软件对控制算法进行了仿真,整个系统的采样时间为0.01s。路面激励的时域数学模型可以用来描述,其中q(t)为路面激励,a为某一常数,根据路面等级选取,v为车速,w(t)为白噪声。选用B级和C级路面对悬架系统仿真,车速均为50km/h。在MATLAB/SIMULINK中仿真得到路面的激励[6],如图8、图9所示。
图10、图11分别为B级和C级路面50km/h车速条件下,被动悬架、PID控制和模糊PID控制悬架垂直加速度的对比。可以看出,模糊PID控制悬架与PID控制悬架和被动悬架相比,能有效降低车身垂直加速度。表2和表3为B级和C级路面激励下的悬架性能对比。从表中可以看出,模糊PID控制悬架的各项性能均优于普通PID控制悬架和被动悬架,在B级和C级路面情况下,垂直加速度均方根值分别降低23.4%和17.3%,动行程分别降低1.9%和0.5%,车轮相对动载荷分别降低10%和7.9%,其改善量总体优于普通PID控制的改善量。
本文针对YBL6891H型客车,介绍了空气悬架电子控制单元的电路结构,并用MULTISIM 10对高度传感器检测电路进行了仿真。采用模糊PID控制算法对空气悬架进行控制,并对1/4悬架模型进行了仿真,结果说明,该算法能有效地降低车身垂直加速度,改善了车辆的行驶平顺性和操纵稳定性,在B级和C级路面上,模糊PID控制悬架的加速度均方根比被动悬架分别降低了23.4%和17.3%,动行程和车轮相对动载荷均方根也有所改善。实践证明,该电子控制悬架系统能满足系统的整体要求,达到良好的控制效果。对车身的侧倾角和俯仰角的控制是下一步要做的工作。
- 基于飞思卡尔HCS08的汽车ECAS设计(03-19)