电动汽车制动能量回收控制策略的研究
电动汽车(EV)的研究是在环境保护问题及能源问题日益受到关注的情况下兴起的。在EV性能提高并逐步迈向产业化的过程中,提高能量的储备与利用率是迫切需要解决的两个问题。尽管蓄电池技术有了长足进步,但由于受安全性、经济性等因素的制约,近期不会有大的突破。因此如何提高EV能量利用率是一个非常关键的问题。
制动能量回收问题对于提高EV的能量利用率具有重要意义。电动汽车采用电制动时,驱动电机运行在发电状态,将汽车的部分动能回馈给蓄电池以对其充电,对延长电动汽车的行驶距离是至关重要的。国外有关研究表明,在存在较频繁的制动与起动的城市工况运行条件下,有效地回收制动能量,可使电动汽车的行驶距离延长百分之十到百分之三十。
目前国内关于制动能量回收的研究还处在初级阶段。制动能量回收要综合考虑汽车动力学特性、电机发电特性、电池安全保证与充电特性等多方面的问题。研制一种既具有实际效用、又符合司机操作习惯的系统是有一定难度的。本文对上述问题作了一些积极的探索,并得出了一些有益的结论。
1 制动模式
电动汽车制动可分为以下三种模式,对不同情况应采用不同的控制策略。
1.1 急刹车
急刹车对应于制动加速度大于2m/s2的过程。出于安全性方面的考虑,急刹车应以机械为主,电刹车同时作用。在急刹车时,可根据初始速度的不同,由车上ABS控制提供相应的机械制动力。
1.2 中轻度刹车
中轻度刹车对应于汽车在正常工况下的制动过程,可分为减速过程与停止过程。电刹车负责减速过程,停止过程由机械刹车完成。两种刹车的切换点由电机发电特性确定。
1.3 汽车长下坡时的刹车
汽车长下坡一般发生在盘山公路下缓坡时。在制动力要求不大时,可完全由电刹车提供。其充电特点表现为回馈电流较小但充电时间较长。限制因素主要为电池的最大可充电时间。
由于电动汽车主要工作在城市工况下,所以本文将研究重点放在中轻度电刹车上。
2 制动能量回收的约束条件
实用的能量回收系统应满足以下要求:
(1)满足刹车的安全要求,符合驾驶员的刹车习惯。
刹车过程中,对安全的要求是第一位的。需要找到电刹车和机械刹车的最佳覆盖区间,在确保安全的前提下,尽可能多地回收能量。具有能量回收系统的电动汽车的刹车过程应尽可能地与传统的刹车过程近似,这将保证在实际应用中,系统有吸引力,可以为大众所接受。
(2)考虑驱动电机的发电工作特性和输出能力。
电动汽车中常用的是永磁直流电机或感应异步电机,应针对不同的电机的发电效率特性,采取相应的控制手段。
(3)确保电池组在充电过程中的安全,防止过充。
电动汽车中常用的电池为镍氢电池、锂电池和铅酸电池。充电时,避免因充电电流过大或充电时间过长而损害电池。
由以上分析可得能量回收的约束条件:
(1)根据电池放电深度的不同,电池可接受的最大充电电流。
(2)电池可接受的最大充电时间。
(3)能量回收停止时电机的转速及与此相对应的充电电流值。
本项目原型车为XL型纯电动车,驱动采用异步交流电机,额定功率为20kW,峰值功率为60kW,额定转矩为53Nm,峰值转矩为290Nm,持续输出三倍额定转矩时间不小于30s,额定转速为3600r/min,最高转速为9000r/min。蓄电池采用24节100Ah镍氢电池,其瞬时充电电流可达1.5C(C为电池放电倍率),即150A。在充电电流为0.5C时,可持续安全充电。实验表明,在电机转速为500r/min时,充电电流小于6A。可设此点为电刹车与机械刹车的切换点。
3 制动能量回收控制算法
3.1制动过程分析
经推导可得,一次刹车回收能量E=K1K2K3(ΔW-FfS)。
特定刹车过程中,车体动能衰减ΔW为定值。特定车型的机械传动效率K1和滚动摩擦力Ff基本上是固定的。对蓄电池来说,制动能量回收对应于短时间(不超过20s)、大电流(可达100A)充电,因此能量回收约束条件(2)可忽略,充电效率K3也可认为恒定。对于电机来说,在制动过程中,其发电效率K2随转速和转矩的变化而变化。制动距离S取决于制动力的大小和制动时间的长短。
由以上分析可知,如果电池状态(包括放电深度、初始充电电流强度)允许,回收能量只与发电机发电效率和刹车距离有关。在满足制动时间要求的前提下,通过调节电机制动转矩可以控制电机转速。
3.2 控制算法
控制策略可描述为:在满足刹车要求的情况下(由中轻度刹车档位决定),根据能量回收约束条件(1)和(3)的不同值,确定最优制动力,使回收的能量达到最大,即电流对时间的积分达到最大。为了与平常的刹车习惯相符合,令制动力随刹车时间呈线性增长,即Fj=Fo+Kt。问题转换为寻找最优的制动力初值Fo和制动力增长系数K。
我国常用的轿车循环25工况[1]规定,汽车最高速度不超
- 电动汽车:颠覆性的快速充电与非接触充电技术(09-20)
- 电动汽车的基本概述及重要组成(10-28)
- 矢量控制变频器在混合动力电动汽车中的应用(01-27)
- 基于CAN总线的电动汽车控制系统设计(05-25)
- 电动汽车驱动系统中的超级电容原理(05-21)
- 动力电池管理系统硬件设计技术(05-30)