微波EDA网,见证研发工程师的成长!
首页 > 应用设计 > 汽车电子 > 详解电池容量计技术原理

详解电池容量计技术原理

时间:03-22 来源: 点击:


图2绝对值放大器原理图

3压频转换器

压频转换器是电池容量计的核心部分,负责将放大的信号转换为频率信号,它的线性度和精度直接影响到整机。实现压频转换的方法也有很多种。从形式上看,有分立元件和专用集成芯片两种形式,一般的分立元件精度、体积、调整复杂程度均高于集成芯片,但其价格较低,而专用芯片在线性度、电压稳定度、精度等指标相对可接受的价格而言有所降低。我们考虑到体积和充放电全程跟踪及性能价格比的问题,选择了VFC32为电压频率转换器件,该器件较好的线性度为全程跟踪精度提供了保证,并以较少的元件使体积缩小,电路原理见图3。


图3压频转换器原理图

4可逆计数器

计数器部分全部采用CMOS电路,一是功耗低,这对依靠电池本身供电显得极为重要;二是其电平与运放电平匹配,并使显示范围增大。见图4。


图4可逆计数器原理图

采用了14级脉冲进位二进制计数器4020一片,4位可逆二进制计数器4516二片,构成21级计数器。其中高7位计数器数值有效作为计数值并输出,而低14位则仅用来计数并不用作输出,且4020是单向计数,无减法功能。

此种设计有两大优点:
(1)4020是高集成度的计数器,可代替3片半4516来使用,这样大大缩小了体积。
(2)当作加法时,4020可精确到最低位;作减法时,误差为低十四位,但这个十四位也是一次性的最大误差,无累加性,因为电路上采用了异步、同步计数混用的方法。当减去14个数(虽然4020是加),4020输出异步脉冲4516减"1",如同作真正减法一样,而4020的数值是不能输出的,这使得结果十分精确。

5控制电路

该部分包含有预置电路、防溢出电路、计数方向控制电路。

本样机为适用范围宽,在计数器的预置和控制电路上均增加了拨动开关,这样可以通过拨动开关设置计数部分初值和终值,可达到检测使用已知电池电容的目的,比较方便。

同时为防计数器双向溢出,分别设置防溢出电路,使计数器计到零和满值时均不再计数,以防错误。

通过对电流流向的比对,输出脉冲控制可逆计数器的计数,构成方向控制电路。

6显示

显示有数字式、指针式两种方式。为保证直观的显示,同时尽可能沿用普通汽车的仪表,仍采用汽车上原有指示电池电压的电压表。而在电压表上设置一个开关,通过它来切换电压、容量的指示,这样较为方便。

这需要将计数器的二进制数转化为电压。显然用D/A转换是可以的,但电路复杂程度上升,成本也有所提高。故为了简化电路我们仅借用D/A转换网络的思想,利用权电阻T形网络将4516的7位数值变换成模拟量输出,推动电压表指示,见图5。


图5显示电路原理图

7工作电源部分

电池容量计不同于其它仪器的是它只能使用电池作为电源,而由于电池电压的变化及波动,直接使用显然是不合适的,为此必须由电池引出产生二次电源。

首先霍尔器件需电源±12V,电路控制计数等部分也亦借用±12V,另外我们考虑到为了使容量指示更直观清晰,其最大电压范围应大些,同时也能充分利用其电压表有效指示。其电压表范围为40V,而电池电压最高为30V,故设定容量指示最大指示为28V,这就需要电源电压为30V。

由于电池起动时有大电流放电,使电压波动十分厉害,约15~30V,为适应其变化,同时减小容量计自身功耗,提高效率,设计全部采用开关电源。

首先+12V的获得是采用LM2575降压调整器,该芯片输入电压可达40V,固定振荡频率52kHz,电压、电流调整率较好,适应容量计的要求。

-12V是利用+12V为输入,通过34063DC/DC变换器加以变换而成。这样损失了部分功率。我们原设计用M2575HV(输入电压60V)由电池电压直接引入,但由于60V的LM2575HV未能买到,只得作罢。将来如有批量,可定货。好在-12V功率有限,损失较小。  30V一组电源,其电压高,电流小,如采用普通DC变换器如2575或其他器件,体积过大,且磁心元件等都大为浪费,得不偿失。故我们在设计中一直在寻找简洁的方法,最后经试验决定利用555振荡器升压并采用倍压整流的方法将12V提升至30V,效果极好,见图6。

产品的设计与计算

电压/频率关系的设定

电压0~10V对应频率0~10kHz


图6 30V电源原理图

电流0~1000A对应电压0~10V

这几个值的选取,综合考虑了霍尔元件、放大器、F/V转换设计的最佳值及试验样机的需要。

2计数位数

4020-14位4516两片共8位,加起来为22位,仅采用21位,其计数个数为:
221=2.097152×106。
对10kHz的计数时间
T=(221×1/104)秒=3.49分。
当10kHz对应1000A时,对45Ah电池来讲
T=C/I=45/1000=0.045h=2.7分<3.49分,
可见计时已够,满度计时安时数为
(221×1/104)×1000/3600=58.25Ah。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top