微波EDA网,见证研发工程师的成长!
首页 > 应用设计 > 汽车电子 > 磁阻车辆检测器的低功耗设计

磁阻车辆检测器的低功耗设计

时间:03-28 来源:电子技术应用 点击:

随着经济的发展,城市交通问题越来越严重,交通拥堵、交通事故频发是影响城市交通安全运行的主要因素。利用车辆检测技术,对车辆进行引导、疏导交通流,合理利用现有的道路资源控制交通流,可有效减少交通拥堵与交通事故的发生。

车辆检测器是检测交通流的主要部件。当车辆通过检测器时,车辆影响地磁场在检测器周围的磁力线分布。磁阻车辆检测器检测周围磁场变化,根据磁场变化检测车辆的信息。通过无线网络将数据传输至控制中心,通过车流量信息控制匝道口的开放与关闭,实现交通流的控制。车辆检测器埋于地下,车辆检测器的使用寿命问题是影响系统推广的主要因素,因此实现低功耗、长寿命是实现车辆检测器系统实际应用价值的必要条件。

为了延长电池供电系统工作寿命,常见的方法有增加电池容量和降低系统功耗[1]。要增加电池容量就意味着电池体积的增加,导致了传感器系统体积庞大、安装不便,不利于工程施工。因此,降低系统功耗是目前国际、国内研究的主要方向。常用的解决方案是利用定时唤醒机制,但唤醒的时间间隔不能过长,否则传感器不能及时响应,导致数据丢失的发生。因此不论有无读取信息需求,系统都要进行定时查询,造成能量消耗,另外定时唤醒需要时钟电路工作,这意味着MCU不能进入彻底休眠状态,导致定时唤醒机制不能达到最佳的节能效果[2]。本文针对这一问题,引入中断唤醒机制(休眠降耗法)、降频降耗方式为节能提供有效途径,并对这几种方法的可行性进行分析,同时利用低功耗的ZigBee网络技术实现数据传输,将系统功率消耗降至最低。ZigBee技术是一种低功耗、低复杂度、低数据传输速率、近距离、低成本的双向无线通信技术,适合于自动控制和远程控制领域,可以嵌入到各种设备中,利用ZigBee网络实现车辆检测数据传输,具有低成本、低功耗、网络结构简单等优点[3]。

1 系统功耗分析

1.1 系统组成

车辆检测器主要由传感器、信号调理、无线数据收发和中央控制器组成,系统结构如图1所示。

车辆检测器埋于路面之下,以磁阻传感器感应车辆通过,产生微弱电压信号,电压信号经过处理后,转换为微控制器所需的中断信号,微处理器检测中断信号产生时刻t,与车辆通过传感器两个不同车轴产生中断信号的时间间隔Δt,根据两个参数可以计算出车辆轴距与车速等信息。

1.2 系统消耗功率分析

系统消耗的功率主要集中在信号调理、微控制器、ZigBee无线收发三部分,表1为影响系统功耗因素列表。

1.2.1信号调理

信号调理模块的功率消耗主要集中在放大器部分[4],放大器将传感器输出的微弱信号进行放大,根据信号的波动强度调节放大倍数,使得输出较为稳定。放大级数越多,工作频率越高;而工作电流越大,消耗功率越大。因此当一级放大可以满足放大要求时,采用一级放大方式,减少放大级数;选择低供电电压、低噪声、低输入偏置电流及低静态电流放大器可有效降低放大器功耗。

1.2.2 微控制器

微控制器为系统控制的核心,在不同工作频率时,消耗的功率不同。数字电路消耗功率主要包括动态功率与静态功率。静态为"0"或"1"的恒定状态,即当电路状态没有进行翻转(保持高电平或低电平)时,电路功耗属于静态功耗;而动态为"0""1"的跳变状态,即电路翻转状态时,产生的功耗为动态功耗[5],数字电路总功耗P如下式所示:

式中:VDD为工作电源电压;IDD为静态时由电源流向电路内部的电流;ITC为脉冲电流的时间平均值;f为工作频率;CL为电路输出端的负载电容。

由于工作频率f、工作电压VDD及CL对总功耗有较大的影响,因此,要降低电路的功耗,就需要降低工作频率、降低工作电压或尽可能使电路处于静态工作状态。

1.2.3 无线射频模块

数据传输部分是系统主要的能量消耗模块,数据传输速率、发射功率是影响无线传输模块的主要因素[6]。发射功率越大,数据传输波特率越高,模块消耗功率就越大。

2 低功耗设计

2.1休眠降耗法

当系统空闲时,利用休眠功能,系统进入低功耗状态,中断的产生会使MCU退出低功耗模式。在具备中断情况下,MCU可以在整个过程中保持睡眠状态,只有产生中断时才被激活,处理器与无线射频在休眠状态时,功耗较低。以MSP430系列单片机与射频芯片CC2520为例,休眠功耗大约只有几微安[7]。

为了确定方案的可行性,对中断方式的两种极端检测方式进行分析:

(1)误差计算

①假设车辆最高时速为200 km/h(即55.6 m/s),车长为2 m,车辆通过传感器的时间t=2/55.6=36 ms。MCU与射频电路由睡眠状态唤醒需要的时间为0.2 ms,误差为0.2/36=0.56%,误差较低,如果在软件中加入校正,

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top