混合动力车用电池均衡方案研究
时间过长, 达不到均衡要求, 而均衡电流的大小是由放电电阻决定的, 电阻值越大均衡电流越小, 因此, 电阻值又不能过大。综上, 电阻值能否适当选取是均衡效果的关键。
( 2)均衡电压阈值( a) 的设定。电压阈值的大小直接决定了均衡电路启动及关闭的时刻, 若电压阈值设的过大, 会导致均衡时间过短, 均衡效果不明显, 达不到要求, 电压阈值设的过小, 则均衡时间过长, 不但白白消耗了能量, 且对电池组各电池有害无益。因此, 需要从电池容量不一致所表现的充放电特征分析, 并结合混合动力车的应用情况来设置均衡阈值。
( 3)均衡模块的启动和关闭。在初始上电后,MCU 定时检测电池组各单体电压, 一旦超过阈值则对需要均衡的单体闭合开关, 进行放电, 其余单体的开关断开。之后MCU 会定时判断单体电压, 重新判断是否符合均衡条件。如果单体的电压一致性回到阈值内, 则所有均衡回路的开关管均断开, 均衡终止。
6 模拟工况测试
为了模拟电池均衡模块在实际车辆运行时的效果, 采用如下测试工况, 并保持室温在10℃ ~ 20℃之间。此工况测试分两个测试程序, 一个是#主放电工况", 其放电量略多于充电量; 另一个是"主充电工况", 其充电量略多于放电量, 并确定SOC 波动范围在30% 至80% 之间。
实验用电池为锰酸锂电池( LMi nO4 ) , 实际容量8. 6Ah, 额定电压3. 6V, 内阻3. 7Ω , 12节串联。
均衡前后电池充电曲线如图3 所示, 均衡前电池充电曲线明显不一致, 电池组压差最大值约为200mV, 对应的容量差约为20% 。充电时高容量单体将先达到阈值电压, 使电池的充入容量明显降低,仅为7Ah, 大大降低了电池的利用率。( b) 图为经过35小时均衡测试后充电曲线图, 可以看出各单体间基本恢复一致, 压差不超过10mV, 充入容量扩大到8. 4Ah。并且经过测量, 实验过程中放电电阻温度控制在60℃以内, 不会出现热失控等安全问题。
由上述实验可以得到, 此均衡方法可在40小时内达到电池SOC 的平衡。并且电路工作稳定, 满足混合动力车辆行驶要求, 可以有效的防止电池不一致性的扩大, 实现了能量的合理配置。
图3 均衡前后充电曲线对比。
7 结束语
在均衡模块的硬件设计上充分考虑了测量的精确性, 系统的稳定性和抗干扰能力。在制定均衡策略过程中兼顾了放电电阻的选择、均衡阈值的选定、均衡的启动和停止等方面。经均衡测试证明此电路工作稳定, 可以有效的解决电池不均衡的问题, 提高了整组电池的使用效率, 对混合动力车具有实用性。
- 混合型和燃料电池型汽车的电子设计挑战分析(01-10)
- 先进的汽车动力电气系统开创混合动力新时代(01-10)
- 采用塑料封装和IMS衬底的混合动力汽车功率IGBT模块(01-10)
- 专家揭密:丰田Prius汽油/电力混合动力车(二)(01-10)
- 专家揭密:丰田Prius汽油/电力混合动力车(01-10)
- 超级电容集成优化混合动力公交车动力总成(01-10)