微波EDA网,见证研发工程师的成长! 2025濠电姷鏁告慨鐑藉极閸涘﹥鍙忛柟缁㈠枟閸庡顭块懜闈涘缂佺嫏鍥х閻庢稒蓱鐏忣厼霉濠婂懎浜惧ǎ鍥э躬婵″爼宕熼鐐差瀴闂備礁鎲¢悷銉ф崲濮椻偓瀵鏁愭径濠勵吅闂佹寧绻傚Λ顓炍涢崟顓犵<闁绘劦鍓欓崝銈嗙箾绾绡€鐎殿喖顭烽幃銏ゅ川婵犲嫮肖闂備礁鎲¢幐鍡涘川椤旂瓔鍟呯紓鍌氬€搁崐鐑芥嚄閼搁潧鍨旀い鎾卞灩閸ㄥ倿鏌涢锝嗙闁藉啰鍠栭弻鏇熺箾閻愵剚鐝曢梺绋款儏濡繈寮诲☉姘勃闁告挆鈧Σ鍫濐渻閵堝懘鐛滈柟鍑ゆ嫹04闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁惧墽鎳撻—鍐偓锝庝簼閹癸綁鏌i鐐搭棞闁靛棙甯掗~婵嬫晲閸涱剙顥氬┑掳鍊楁慨鐑藉磻閻愮儤鍋嬮柣妯荤湽閳ь兛绶氬鎾閳╁啯鐝曢梻浣藉Г閿氭い锔诲枤缁辨棃寮撮姀鈾€鎷绘繛杈剧秬濞咃絿鏁☉銏$厱闁哄啠鍋撴繛鑼枛閻涱噣寮介褎鏅濋梺闈涚墕濞诧絿绮径濠庢富闁靛牆妫涙晶閬嶆煕鐎n剙浠遍柟顕嗙節婵$兘鍩¢崒婊冨箺闂備礁鎼ú銊╁磻濞戙垹鐒垫い鎺嗗亾婵犫偓闁秴鐒垫い鎺嶈兌閸熸煡鏌熼崙銈嗗26闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁惧墽鎳撻—鍐偓锝庝簼閹癸綁鏌i鐐搭棞闁靛棙甯掗~婵嬫晲閸涱剙顥氬┑掳鍊楁慨鐑藉磻閻愮儤鍋嬮柣妯荤湽閳ь兛绶氬鎾閳╁啯鐝栭梻渚€鈧偛鑻晶鎵磼椤曞棛鍒伴摶鏍归敐鍫燁仩妞ゆ梹娲熷娲偡閹殿喗鎲奸梺鑽ゅ枂閸庣敻骞冨鈧崺锟犲礃椤忓棴绱查梻浣虹帛閻熴垽宕戦幘缁樼厱闁靛ǹ鍎抽崺锝団偓娈垮枛椤攱淇婇幖浣哥厸闁稿本鐭花浠嬫⒒娴e懙褰掑嫉椤掑倻鐭欓柟杈惧瘜閺佸倿鏌ㄩ悤鍌涘 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁惧墽鎳撻—鍐偓锝庝簼閹癸綁鏌i鐐搭棞闁靛棙甯掗~婵嬫晲閸涱剙顥氬┑掳鍊楁慨鐑藉磻閻愮儤鍋嬮柣妯荤湽閳ь兛绶氬鎾閻樻爠鍥ㄧ厱閻忕偛澧介悡顖氼熆鐟欏嫭绀€闁宠鍨块、娆戠磼閹惧墎绐楅梻浣告啞椤棝宕橀敐鍡欌偓娲倵楠炲灝鍔氭繛鑼█瀹曟垿骞橀懜闈涙瀭闂佸憡娲﹂崜娑㈡晬濞戙垺鈷戦柛娑樷看濞堟洖鈹戦悙璇ц含闁诡喕鍗抽、姘跺焵椤掆偓閻g兘宕奸弴銊︽櫌婵犮垼娉涢鍡椻枍鐏炶В鏀介柣妯虹仛閺嗏晛鈹戦鑺ュ唉妤犵偛锕ュ鍕箛椤掑偊绱遍梻浣筋潐瀹曟﹢顢氳閺屻劑濡堕崱鏇犵畾闂侀潧鐗嗙€氼垶宕楀畝鍕厱婵炲棗绻戦ˉ銏℃叏婵犲懏顏犵紒杈ㄥ笒铻i柤濮愬€ゅΣ顒勬⒒娴e懙褰掓晝閵堝拑鑰块梺顒€绉撮悞鍨亜閹哄秷鍏岄柛鐔哥叀閺岀喖宕欓妶鍡楊伓闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻锝夊箣閿濆憛鎾绘煕閵堝懎顏柡灞诲€濆畷顐﹀Ψ閿旇姤鐦庡┑鐐差嚟婵敻鎳濇ィ鍐ㄧ厴闁瑰鍋涚粻鐘绘⒑缁嬪尅鏀绘い銊ユ楠炲牓濡歌閸嬫捇妫冨☉娆忔殘閻庤娲栧鍫曞箞閵娿儺娓婚悹鍥紦婢规洟姊绘担铏瑰笡濞撴碍顨婂畷鏉库槈濮樺彉绗夊┑鐐村灦鑿ゆ俊鎻掔墛缁绘盯宕卞Ο鍝勵潔濡炪倕绻掗崰鏍ь潖缂佹ɑ濯撮柤鎭掑劤閵嗗﹪姊洪棃鈺冪Ф缂佺姵鎹囬悰顔跨疀濞戞瑦娅㈤梺璺ㄥ櫐閹凤拷
首页 > 应用设计 > 汽车电子 > 超声换能器驱动电路及回波接收电路的设计

超声换能器驱动电路及回波接收电路的设计

时间:10-15 来源:电子技术应用 点击:

随着我国汽车工业和高速公路事业的飞速发展,研制、开发基于高性价比的超声波测距技术的车辆防撞系统具有重要的社会与经济价值。

车辆防撞系统具有自动探测前方障碍物、自动减速或刹车的功能,是未来高级小汽车和载重车辆必备的安全行驶辅助装置。日本、美国和欧洲等各大汽车公司都已投入了相当的人力、物力开发在高级汽车上使用的防撞与安全预警系统,包括毫米波雷达、CCD摄像机、GPS和高档微机等。据海外媒体报道,戴姆勒-克莱斯勒公司日前成功开发出供商用车(尤指卡车)使用的电子刹车系统,它利用车载前视雷达感应器探测前方景物,由车载控制器处理这一感知信息而形成虚拟景象,由此来判断当前路况是否需要启动自动刹车装置。这种新型刹车系统在未来的两、三年内即可面市,预期价格为3745欧元[1]。显然,就普通汽车而言,该自动电子刹车装置太昂贵。

超声测距传感器价格低廉,其性能几乎不受光线、粉尘、烟雾、电磁干扰和有毒气体的影响,而且使用方便。然而,常见的超声测距仪的作用距离较短,一般均小于或等于10m,从而限制了它在汽车高速行驶时的使用性能。超声测距仪的作用距离不仅仅依赖于高性能的超声波探头,而且与超声波的发射与接收电路的机电能量转换效率有关。本文主要研究一种高效的超声换能器收发电路,以增大超声测距仪的作用距离,使之能够在未来的国产化汽车主动防撞系统中得到应用。

1 超声测距原理

谐振频率高于20kHz的声波被称为超声波。超声波为直线传播方式,频率越高,绕射能力越弱,但反射能力越强。利用超声波的这种性能就可制成超声传感器,或称为超声换能器,它是一种既可以把电能转化为声能、又可以把声能转化为电能的器件或装置。换能器在电脉冲激励下可将电能转换为机械能,向外发送超声波;反之,当换能器处在接收状态时,它可将声能(机械能)转换为电能。

最常用的超声测距方法是回声探测法。其工作原理是:使换能器向介质发射声脉冲,声波遇到被测物体(目标)后必有反射回来的声波(回波)作用于换能器上。若已知介质的声速为c,第一个回波到达的时刻与发射脉冲时刻的时间差为t,那么即可按式s=ct/2计算换能器与目标之间的距离,如图1所示。考虑到传感器的成本与安装的方便性,采用收发兼用型超声波探头,即实际距离d=s。

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁惧墽鎳撻—鍐偓锝庝簼閹癸綁鏌i鐐搭棞闁靛棙甯掗~婵嬫晲閸涱剙顥氬┑掳鍊楁慨鐑藉磻濞戔懞鍥偨缁嬪灝鐎俊銈忕到閸燁偆绮诲☉妯忓綊鏁愰崨顔跨缂備礁顑勯懗鍓佹閹捐纾兼慨姗嗗厴閸嬫捇鎮滈懞銉モ偓鍧楁煥閺囨氨鍔嶉柟鍐茬焸濮婄粯鎷呴崨濠傛殘闂佽崵鍠嗛崕鎶藉箲閵忕媭娼ㄩ柍褜鍓欓锝嗙節濮橆厼浜滅紒鐐妞存悂寮查鍕拺闁圭ǹ娴风粻鎾寸箾鐠囇呭埌閺佸牊淇婇妶鍛櫤闁稿鍓濈换婵囩節閸屾稑娅e銈忕到閵堟悂骞冩禒瀣垫晬婵炴垶蓱鐠囩偤姊虹拠鈥虫灍闁荤噦濡囬幑銏犫攽鐎n亞鍊為梺闈浤涢崘銊ヮ洭濠电姷鏁告慨鐑藉极閹间礁纾规い鏍仜閻掑灚銇勯幒鎴濐仼缁炬儳顭烽弻鐔煎礈瑜忕敮娑㈡煟閹惧娲撮柟顔筋殜閺佹劖鎯旈垾鑼晼濠电姭鎷冮崘顏冪驳闂侀€涚┒閸斿秶鎹㈠┑瀣窛妞ゆ洖鎳嶉崫妤呮⒒娴e憡璐¢柟铏尵閳ь剚姘ㄦ晶妤佺┍婵犲洤绠瑰ù锝堝€介妸鈺傜叆闁哄啠鍋撻柛搴$-缁辩偤骞掑Δ浣叉嫽闂佺ǹ鏈悷銊╁礂瀹€鍕厵闁惧浚鍋呭畷宀€鈧娲滈弫璇差嚕娴犲鏁囬柣鎰問閸炵敻姊绘担鑺ョ《闁革綇绠撻獮蹇涙晸閿燂拷...
声波的速度c与温度T有关[2]。如果环境温度变化显著,则必须考虑温度补偿问题。空气中声速与温度的关系可表示为:
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁惧墽鎳撻—鍐偓锝庝簼閹癸綁鏌i鐐搭棞闁靛棙甯掗~婵嬫晲閸涱剙顥氬┑掳鍊楁慨鐑藉磻濞戔懞鍥偨缁嬪灝鐎俊銈忕到閸燁偆绮诲☉妯忓綊鏁愰崨顔跨缂備礁顑勯懗鍓佹閹捐纾兼慨姗嗗厴閸嬫捇鎮滈懞銉モ偓鍧楁煥閺囨氨鍔嶉柟鍐茬焸濮婄粯鎷呴崨濠傛殘闂佽崵鍠嗛崕鎶藉箲閵忕媭娼ㄩ柍褜鍓欓锝嗙節濮橆厼浜滅紒鐐妞存悂寮查鍕拺闁圭ǹ娴风粻鎾寸箾鐠囇呭埌閺佸牊淇婇妶鍛櫤闁稿鍓濈换婵囩節閸屾稑娅e銈忕到閵堟悂骞冩禒瀣垫晬婵炴垶蓱鐠囩偤姊虹拠鈥虫灍闁荤噦濡囬幑銏犫攽鐎n亞鍊為梺闈浤涢崘銊ヮ洭濠电姷鏁告慨鐑藉极閹间礁纾规い鏍仜閻掑灚銇勯幒鎴濐仼缁炬儳顭烽弻鐔煎礈瑜忕敮娑㈡煟閹惧娲撮柟顔筋殜閺佹劖鎯旈垾鑼晼濠电姭鎷冮崘顏冪驳闂侀€涚┒閸斿秶鎹㈠┑瀣窛妞ゆ洖鎳嶉崫妤呮⒒娴e憡璐¢柟铏尵閳ь剚姘ㄦ晶妤佺┍婵犲洤绠瑰ù锝堝€介妸鈺傜叆闁哄啠鍋撻柛搴$-缁辩偤骞掑Δ浣叉嫽闂佺ǹ鏈悷銊╁礂瀹€鍕厵闁惧浚鍋呭畷宀€鈧娲滈弫璇差嚕娴犲鏁囬柣鎰問閸炵敻姊绘担鑺ョ《闁革綇绠撻獮蹇涙晸閿燂拷...

2 驱动电路的设计

图2所示的超声频驱动电源用于激励超声换能器使之向外发送超声波,超声频电源与超声换能器仪器构成超声发生器。
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁惧墽鎳撻—鍐偓锝庝簼閹癸綁鏌i鐐搭棞闁靛棙甯掗~婵嬫晲閸涱剙顥氬┑掳鍊楁慨鐑藉磻濞戔懞鍥偨缁嬪灝鐎俊銈忕到閸燁偆绮诲☉妯忓綊鏁愰崨顔跨缂備礁顑勯懗鍓佹閹捐纾兼慨姗嗗厴閸嬫捇鎮滈懞銉モ偓鍧楁煥閺囨氨鍔嶉柟鍐茬焸濮婄粯鎷呴崨濠傛殘闂佽崵鍠嗛崕鎶藉箲閵忕媭娼ㄩ柍褜鍓欓锝嗙節濮橆厼浜滅紒鐐妞存悂寮查鍕拺闁圭ǹ娴风粻鎾寸箾鐠囇呭埌閺佸牊淇婇妶鍛櫤闁稿鍓濈换婵囩節閸屾稑娅e銈忕到閵堟悂骞冩禒瀣垫晬婵炴垶蓱鐠囩偤姊虹拠鈥虫灍闁荤噦濡囬幑銏犫攽鐎n亞鍊為梺闈浤涢崘銊ヮ洭濠电姷鏁告慨鐑藉极閹间礁纾规い鏍仜閻掑灚銇勯幒鎴濐仼缁炬儳顭烽弻鐔煎礈瑜忕敮娑㈡煟閹惧娲撮柟顔筋殜閺佹劖鎯旈垾鑼晼濠电姭鎷冮崘顏冪驳闂侀€涚┒閸斿秶鎹㈠┑瀣窛妞ゆ洖鎳嶉崫妤呮⒒娴e憡璐¢柟铏尵閳ь剚姘ㄦ晶妤佺┍婵犲洤绠瑰ù锝堝€介妸鈺傜叆闁哄啠鍋撻柛搴$-缁辩偤骞掑Δ浣叉嫽闂佺ǹ鏈悷銊╁礂瀹€鍕厵闁惧浚鍋呭畷宀€鈧娲滈弫璇差嚕娴犲鏁囬柣鎰問閸炵敻姊绘担鑺ョ《闁革綇绠撻獮蹇涙晸閿燂拷...

2.1 场效应管功率放大电路的设计

在此采用在超声波发生器上应用较多的乙类推挽放大电路。其特点是无激励信号时,两个功率管IRF120的静态电流为零;而有激励信号时,两个功率管交替工作,各输出半波信号,合起来形成一个完整的波形。

SN75732是双通道与非门TTL/MOS专用接口器件,其中,管脚2是两个与非门公用的使能输入端(高电平有效),管脚1/7、管脚3/6分别是两个与非门的输入/输出端;管脚4是数字地;管脚8接5V直流电源,管脚5接直流电源VDD。利用该接口电路就可以直接用TTL电平来驱动MOSFET功率管。只要适当选取电阻R1就可以确定MOSFET功率管IRF120的栅源电压VGS,进而确定功率管导通时的漏极电流ID;R用于限制漏极电流ID的大小,避免功率管导通瞬间产生过大的电流冲击。当选通信号为低电平时,SN75732的两个与非门均输出低电平,功率管IRF120截止,发射电路不工作,而继电器J处于接通状态(与SIG1和SIG2接触);当选通信号为高电平时,超声频脉冲信号通过与非门HC00的逻辑变换后,使SN75732的两个与非门交替输出高电平,驱动两个功率管IRF120交替导通与截止(推挽放大),通过脉冲变压器升压输出高振幅正弦波,换能器将获得的能量以声能形式辐射出去。此时,继电器J处于常闭状态(换能器接入驱动电路的输出端)。

要使非线性失真不明显,其功率最大,负载应当是固定不变的。因此变压器的另一作用是进行耦合,将实际负载RL′变换成所期望的值RL,以实现阻抗匹配。如图3所示,AB和BQ分别代表了ID和(VDD-VDSS),因此△ABQ的面积就代表了工作在乙类的互补对称电路输出功率的大小。△ABQ的面积愈大,就表明输出功率Po也愈大。IDm为流过功率管的最大电流,对应于图中负载线AQ,其功率三角形面积最大,非线性失真不明显。所以,最大功率的负载电阻应当是RL=(VDD-VDSS)/IDm。
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁惧墽鎳撻—鍐偓锝庝簼閹癸綁鏌i鐐搭棞闁靛棙甯掗~婵嬫晲閸涱剙顥氬┑掳鍊楁慨鐑藉磻濞戔懞鍥偨缁嬪灝鐎俊銈忕到閸燁偆绮诲☉妯忓綊鏁愰崨顔跨缂備礁顑勯懗鍓佹閹捐纾兼慨姗嗗厴閸嬫捇鎮滈懞銉モ偓鍧楁煥閺囨氨鍔嶉柟鍐茬焸濮婄粯鎷呴崨濠傛殘闂佽崵鍠嗛崕鎶藉箲閵忕媭娼ㄩ柍褜鍓欓锝嗙節濮橆厼浜滅紒鐐妞存悂寮查鍕拺闁圭ǹ娴风粻鎾寸箾鐠囇呭埌閺佸牊淇婇妶鍛櫤闁稿鍓濈换婵囩節閸屾稑娅e銈忕到閵堟悂骞冩禒瀣垫晬婵炴垶蓱鐠囩偤姊虹拠鈥虫灍闁荤噦濡囬幑銏犫攽鐎n亞鍊為梺闈浤涢崘銊ヮ洭濠电姷鏁告慨鐑藉极閹间礁纾规い鏍仜閻掑灚銇勯幒鎴濐仼缁炬儳顭烽弻鐔煎礈瑜忕敮娑㈡煟閹惧娲撮柟顔筋殜閺佹劖鎯旈垾鑼晼濠电姭鎷冮崘顏冪驳闂侀€涚┒閸斿秶鎹㈠┑瀣窛妞ゆ洖鎳嶉崫妤呮⒒娴e憡璐¢柟铏尵閳ь剚姘ㄦ晶妤佺┍婵犲洤绠瑰ù锝堝€介妸鈺傜叆闁哄啠鍋撻柛搴$-缁辩偤骞掑Δ浣叉嫽闂佺ǹ鏈悷銊╁礂瀹€鍕厵闁惧浚鍋呭畷宀€鈧娲滈弫璇差嚕娴犲鏁囬柣鎰問閸炵敻姊绘担鑺ョ《闁革綇绠撻獮蹇涙晸閿燂拷...

场效应管IRF120采用电压驱动方式,与负载电流和安全工作区域无关,电路设计较为简单;对

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top