汽车电子中的DSP和FPGA运用
DSP或由DSP核组成的ASIC来完成的。在汽车电子产品中,对产品的大孝重量、功耗特别关注;在数据传输方面,在汽车电子系统中由声音信号数字化所产生的大量数据,要依靠高性能的DSP和FPGA来减少存储空间和传输带宽的要求,需要对视频信号与音频信号的编码、解码、彩色空间转换、回音消除、滤波、误码校正、复用、比特流协议处理等任务进行自适应实时处理,这是往往非DSP和FPGA不能完成的。
控制理论处理是汽车电子中的难点和重点问题,利用经典和现代控制理论而建立的开环、死循环、最优、自适应控制系统来实现汽车的最优化控制。建立这些控制系统首先对汽车某个系统,如点火提前角优化控制系统进行识别,建立该系统的数学模型,然后采用相应的控制方法进行优化控制。但是发动机本身结构比较复杂,影响点火的因素较多,理论推导优化点火状态下的数学模型比较困难。因此,一般采用实验的方法找出各种工况下的最佳点火提前角,然后存入基于DSP和 FPGA或DSP和 FPGA阵列加大容量外部存储器中;这样可以避免使用计算机。在控制过程中,系统实时地检测发动机的工况(如发动机转速、功率等),用查表的方法,查出该工况下的最佳点火提前角,进行修正后再去控制点火。这比传统的基于计算机的控制方法,一方面,大大地减少了体积;另一方面,更具有实时性、灵活性。悬架电子控制,是指计算机检测到转向和制动状况的信号后,能自适应地处理车辆的侧倾、前后仰,并自动调整减震器阻尼力的控制系统,它能防止倾斜并提高车轮的地面附着力,超声波高度传感器用来控制车身高度,空气弹簧用来调整弹性系统,光栅检测器用来测定转向角等等。而DSP和FPGA的出现和发展应用,已使各系统控制走向集中,形成整车的智能控制系统。
"智能交通系统"作为未来汽车和交通行业共同的追求方向,它将包括智能公路和智能汽车系统。它结合先进得公路信息处理技术和雷达防撞技术,将公路和汽车连为一个整体,可以极大地提高汽车流量,大幅度地降低交通事故的发生率。因此,汽车智能化相关的产品已受到汽车制造商们的高度重视。智能交通系统能根据驾驶员提供的目标资料,向驾驶员提供距离最短,而且能绕开车辆密度相对集中处的最佳行驶路线。"安全第一"永远是用户购车的第一选择,目前研究比较热的车用毫米波自适应防撞雷达,就是为解决高速公路上的由于撞车而造成的大量交通事故而研制的。由于在高速公路汽车间的相对速度都很高,而对雷达回波信号频差的提取是必须实时地。因而,对于对雷达回波信号频差的提取和处理,以及自适应防撞控制系统的反馈控制处理,往往是采用DSP或FPGA来实现的。
4 发展展望
纵观近几十年来汽车技术的重大成就,大都是在应用电子技术上进行的突破,电子技术已成为汽车工业发展的重要动力源泉。DSP和FPGA的出现给汽车产品和汽车电子技术带来了革命性的变化,世界汽车工业的DSP和FPGA用量激增,由从前单片DSP或FPGA处理器发展成多DSP或FPGA处理器,或 DSP和FPGA阵列的高速处理器。基于DSP和FPGA的汽车电子产品能够满足未来的汽车发展的需要,并且,在多种车型并存的时代里,由以DSP和 FPGA为核心所构建的通用硬件平台,可以通过不同的软件加载的方式来实现这种兼容。伴随着未来汽车电子技术的不断发展,DSP和FPGA的速度将会不断提高。就DSP而言,目前发展很快,主要的趋势有:在单片DSP中实现多个MAC、更多的寄存器、更宽的程序总线和数据总线、更高的工作频率;从结构上,采用SIMD以及MIMD,采用超长指令等。就FPGA而言,由于亚微米工艺的采用,其速度更快,门数更多。目前Lucent和XILINX公司均有10 万门以上的产品,并且集成了一些新的功能,如System on Chip,Programming on System等,使其更加灵活。
我国对于汽车电子系统的研究还不够深入。汽车制动防抱死系统、安全气囊、自动变速器和柴油机电控系统等仅在部分高校和企业进行了探索性研究,并未进入实用阶段。以汽车电子技术为代表的高新技术,正是我国汽车工业发展的"瓶颈"。针对这种情况,我国汽车电子技术的研究不仅应以汽车的节能、环保、安全为重点,力争尽快掌握它们的核心技术,缩小与发达国家的差距,更应以车载通信和高速实时信号处理技术这类新兴技术为突破口,依托国家信息技术研究的成果,开发先进的车载计算和信息处理产品,带动整个汽车电子技术的进步,提高我国汽车的电子化水平。
- 另类传感器观念:汽车传感器(11-30)
- 汽车内部噪声智能控制系统的设计(11-28)
- 电源分配结构的三大转变为电源管理技术开创新局面(01-10)
- 基于MCU和DSP的步进电机控制技术(01-10)
- 采用DSP免提开发平台的车载信号处理与音频系统(01-24)
- 基于DSP的免持车载系统开辟新天地(02-20)