微波EDA网,见证研发工程师的成长! 2025婵犵數濮烽弫鍛婃叏閻戣棄鏋侀柛娑橈攻閸欏繘鏌熺紒銏犳灍闁稿骸顦…鍧楁嚋闂堟稑顫岀紓浣哄珡閸パ咁啇闁诲孩绋掕摫閻忓浚鍘奸湁婵犲﹤鎳庢禍鎯庨崶褝韬┑鈥崇埣瀹曠喖顢橀悙宸€撮梻鍌欑閹诧繝鎮烽妷褎宕叉慨妞诲亾鐎殿喖顭烽弫鎰緞婵犲嫷鍚呴梻浣瑰缁诲倸螞椤撶倣娑㈠礋椤撶姷锛滈梺缁樺姦閸撴瑩宕濋妶鍡欑缁绢參顥撶弧鈧悗娈垮枛椤兘骞冮姀銈呭窛濠电姴瀚倴闂傚倷绀侀幉锟犲箰閸℃稑宸濇い鏃傜摂閸熷懐绱撻崒姘偓鎼佸磹閻戣姤鍤勯柤鎼佹涧閸ㄦ梹銇勯幘鍗炵仼闁搞劌鍊块弻娑㈩敃閿濆棛顦ラ梺钘夊暟閸犳牠寮婚弴鐔虹闁绘劦鍓氶悵鏇㈡⒑缁嬫鍎忔俊顐g箞瀵鈽夊顐e媰闂佸憡鎸嗛埀顒€危閸繍娓婚柕鍫濇嚇閻涙粓鏌熼崙銈嗗04闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鎯у⒔閹虫捇鈥旈崘顏佸亾閿濆簼绨奸柟鐧哥秮閺岋綁顢橀悙鎼闂侀潧妫欑敮鎺楋綖濠靛鏅查柛娑卞墮椤ユ艾鈹戞幊閸婃鎱ㄩ悜钘夌;闁绘劗鍎ら崑瀣煟濡崵婀介柍褜鍏涚欢姘嚕閹绢喖顫呴柍鈺佸暞閻濇洟姊绘担钘壭撻柨姘亜閿旇鏋ょ紒杈ㄦ瀵挳濮€閳锯偓閹风粯绻涙潏鍓хК婵炲拑绲块弫顔尖槈閵忥紕鍘遍梺鍝勫暊閸嬫挻绻涢懠顒€鏋涢柣娑卞櫍瀵粙顢樿閺呮繈姊洪棃娑氬婵炶绲跨划顓熷緞婵犲孩瀵岄梺闈涚墕濡稒鏅堕柆宥嗙厱閻庯綆鍓欐禒閬嶆煙椤曞棛绡€濠碉紕鍏橀崺锟犲磼濠婂啫绠洪梻鍌欑閹碱偄煤閵娾晛纾绘繛鎴欏灩閻掑灚銇勯幒鍡椾壕濠电姭鍋撻梺顒€绉撮悞鍨亜閹哄秷鍏岄柛鐔哥叀閺岀喖宕欓妶鍡楊伓21闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鎯у⒔閹虫捇鈥旈崘顏佸亾閿濆簼绨奸柟鐧哥秮閺岋綁顢橀悙鎼闂侀潧妫欑敮鎺楋綖濠靛鏅查柛娑卞墮椤ユ艾鈹戞幊閸婃鎱ㄩ悜钘夌;闁绘劗鍎ら崑瀣煟濡崵婀介柍褜鍏涚欢姘嚕閹绢喖顫呴柍鈺佸暞閻濇牠姊绘笟鈧埀顒傚仜閼活垱鏅堕幍顔剧<妞ゆ洖妫涢崚浼存懚閺嶎灐褰掓晲閸噥浠╁銈嗘⒐濞茬喎顫忓ú顏呭仭闁规鍠楅幉濂告⒑閼姐倕鏋傞柛搴f暬楠炲啫顫滈埀顒勫春閿熺姴绀冩い蹇撴4缁辨煡姊绘担铏瑰笡闁荤喆鍨藉畷鎴﹀箻缂佹ḿ鍘遍梺闈浨归崕鎶藉春閿濆洠鍋撳▓鍨灈妞ゎ參鏀辨穱濠囧箹娴e摜鍘搁梺绋挎湰閻喚鑺辨禒瀣拻濞达絽鎳欒ぐ鎺戝珘妞ゆ帒鍊婚惌娆撴煙鏉堟儳鐦滈柡浣稿€块弻銊╂偆閸屾稑顏� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鎯у⒔閹虫捇鈥旈崘顏佸亾閿濆簼绨奸柟鐧哥秮閺岋綁顢橀悙鎼闂侀潧妫欑敮鎺楋綖濠靛鏅查柛娑卞墮椤ユ艾鈹戞幊閸婃鎱ㄩ悜钘夌;闁绘劗鍎ら崑瀣煟濡崵婀介柍褜鍏涚欢姘嚕閹绢喖顫呴柣妯荤垹閸ャ劎鍘遍柣蹇曞仜婢т粙鎮¢姘肩唵閻熸瑥瀚粈鈧梺瀹狀潐閸ㄥ潡銆佸▎鎴犵<闁规儳澧庣粣妤呮⒒娴e憡鍟炴い顓炴瀹曟﹢鏁愰崱娆屽亾濞差亝鍊垫鐐茬仢閸旀碍绻涢懠顒€鈻堢€规洘鍨块獮姗€鎳滈棃娑欑€梻浣告啞濞诧箓宕滃☉銏℃櫖婵炴垯鍨洪埛鎴︽煕濞戞ǚ鐪嬫繛鍫熸礀閳规垿鎮欑拠褑鍚梺璇″枙閸楁娊銆佸璺虹劦妞ゆ巻鍋撻柣锝囧厴瀹曞ジ寮撮妸锔芥珜濠电姰鍨煎▔娑㈩敄閸℃せ鏋嶉悘鐐缎掗弨浠嬫煟濡櫣浠涢柡鍡忔櫅閳规垿顢欓懞銉ュ攭濡ょ姷鍋涢敃銉ヮ嚗閸曨垰绠涙い鎺戝亰缁遍亶姊绘担绛嬫綈鐎规洘锕㈤、姘愁樄闁哄被鍔戞俊鍫曞幢閺囩姷鐣鹃梻渚€娼ч悧鍡欌偓姘煎灦瀹曟鐣濋崟顒傚幈濠电偛妫楃换鎴λ夐姀鈩冨弿濠电姴鎳忛鐘电磼鏉堛劌绗掗摶锝夋煠婵劕鈧倕危椤掑嫭鈷掑ù锝呮嚈瑜版帗鏅濋柕鍫濇嫅閼板潡姊洪鈧粔鎾倿閸偁浜滈柟鍝勭Х閸忓矂鏌涢悢鍝ュ弨闁哄瞼鍠栧畷娆撳Χ閸℃浼�濠电姷鏁告慨鐑藉极閸涘﹥鍙忛柣鎴f閺嬩線鏌涘☉姗堟敾闁告瑥绻橀弻锝夊箣閿濆棭妫勯梺鍝勵儎缁舵岸寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ゆい顓犲厴瀵鏁愭径濠勭杸濡炪倖甯婇悞锕傚磿閹剧粯鈷戦柟鑲╁仜婵″ジ鏌涙繝鍌涘仴鐎殿喛顕ч埥澶愬閳哄倹娅囬梻浣瑰缁诲倸螞濞戔懞鍥Ψ瑜忕壕钘壝归敐鍛儓鐏忓繘姊洪崨濠庢畷濠电偛锕ら锝嗙節濮橆厼浜滈梺鎯х箰濠€閬嶆晬濠婂牊鈷戦梻鍫熺〒缁犲啿鈹戦鐐毈闁诡喗锕㈠畷濂稿閵忣澁绱查梻浣虹帛閸旓箓宕滃▎鎾崇闁靛牆妫庢禍婊勩亜閹捐泛孝闁告ê顕埀顒侇問閸犳牠鈥﹂柨瀣╃箚闁归棿绀侀悡娑㈡煕鐏炲墽鐓紒銊ょ矙濮婄粯鎷呴崨闈涚秺瀵敻顢楅崒婊呯厯闂佺鎻€靛矂寮崒鐐寸叆闁绘洖鍊圭€氾拷
首页 > 应用设计 > 汽车电子 > 汽车主动悬架的单神经元自适应控制

汽车主动悬架的单神经元自适应控制

时间:09-08 来源: 点击:
一、前言

汽车悬架系统对车辆行驶平顺性、乘坐舒适性和操纵稳定性有很大影响。传统的被动悬架只能被动地存储和吸收外界能量,不能主动适应车载质量、轮胎刚度等车辆参数和路面激励的变化,大大制约了车辆性能的提高。主动悬架克服了传统被动悬架的诸多局限,使悬架系统对不同运行工况具有最大程度的适应能力。

由于悬架系统的模型参数往往不确定,路面激励未知且可变,研究开发出各种自适应控制策略应用于主动悬架控制[1>,主要有模型参考自适应控制、自校正控制和神经网络自适应控制。文献[2>提出了以理想天棚阻尼控制为参考模型的自适应控制策略,但在设计中需要选择一个合适的Lyapunov函数,这要求有一定的理论知识和实践经验,否则不易获得较好的自适应规律。文献[3>、文献[4>的自校正控制需要首先在线估计模型参数或控制器参数,然后再综合控制律,是一种依赖于模型的解析设计方法,且比一般的常规控制器要复杂。文献[5>采用神经网络间接自适应控制,充分利用神经网络在非线性处理和自学习、自适应方面的优势,但基于多层结构的神经网络结构相对复杂,又因采用了S型作用函数而计算量较大,在线调节权重用时较长,不宜于实时在线控制。

文献[6>提出了一种基于单个自适应神经元的非模型直接控制方法。它的显著特点是无需进行系统建模,充分利用神经元的关联搜索和学习能力来实现控制目的。该控制器结构非常简单,运算量小,实时性好,控制品质优,对模型参数的变化和外界扰动具有较强的适应性和鲁棒性。自适应神经元控制已被成功应用于电力系统、汽车防抱制动系统、医疗药品注射系统等[7-9>。作者针对汽车主动悬架,设计一个自适应神经元控制器,研究系统在随机路面激励下的减振效果,同时考察控制器在变参数条件下的鲁棒性。

二、主动悬架系统的动力学模型

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁惧墽鎳撻—鍐偓锝庝簼閹癸綁鏌i鐐搭棞闁靛棙甯掗~婵嬫晲閸涱剙顥氬┑掳鍊楁慨鐑藉磻濞戔懞鍥偨缁嬪灝鐎俊銈忕到閸燁偆绮诲☉妯忓綊鏁愰崨顔跨缂備礁顑勯懗鍓佹閹捐纾兼慨姗嗗厴閸嬫捇鎮滈懞銉モ偓鍧楁煥閺囨氨鍔嶉柟鍐茬焸濮婄粯鎷呴崨濠傛殘闂佽崵鍠嗛崕鎶藉箲閵忕媭娼ㄩ柍褜鍓欓锝嗙節濮橆厼浜滅紒鐐妞存悂寮查鍕拺闁圭ǹ娴风粻鎾寸箾鐠囇呭埌閺佸牊淇婇妶鍛櫤闁稿鍓濈换婵囩節閸屾稑娅e銈忕到閵堟悂骞冩禒瀣垫晬婵炴垶蓱鐠囩偤姊虹拠鈥虫灍闁荤噦濡囬幑銏犫攽鐎n亞鍊為梺闈浤涢崘銊ヮ洭濠电姷鏁告慨鐑藉极閹间礁纾规い鏍仜閻掑灚銇勯幒鎴濐仼缁炬儳顭烽弻鐔煎礈瑜忕敮娑㈡煟閹惧娲撮柟顔筋殜閺佹劖鎯旈垾鑼晼濠电姭鎷冮崘顏冪驳闂侀€涚┒閸斿秶鎹㈠┑瀣窛妞ゆ洖鎳嶉崫妤呮⒒娴e憡璐¢柟铏尵閳ь剚姘ㄦ晶妤佺┍婵犲洤绠瑰ù锝堝€介妸鈺傜叆闁哄啠鍋撻柛搴$-缁辩偤骞掑Δ浣叉嫽闂佺ǹ鏈悷銊╁礂瀹€鍕厵闁惧浚鍋呭畷宀€鈧娲滈弫璇差嚕娴犲鏁囬柣鎰問閸炵敻姊绘担鑺ョ《闁革綇绠撻獮蹇涙晸閿燂拷...

选取二自由度1/4主动悬架为研究对象,如图1所示。动力学方程为

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁惧墽鎳撻—鍐偓锝庝簼閹癸綁鏌i鐐搭棞闁靛棙甯掗~婵嬫晲閸涱剙顥氬┑掳鍊楁慨鐑藉磻濞戔懞鍥偨缁嬪灝鐎俊銈忕到閸燁偆绮诲☉妯忓綊鏁愰崨顔跨缂備礁顑勯懗鍓佹閹捐纾兼慨姗嗗厴閸嬫捇鎮滈懞銉モ偓鍧楁煥閺囨氨鍔嶉柟鍐茬焸濮婄粯鎷呴崨濠傛殘闂佽崵鍠嗛崕鎶藉箲閵忕媭娼ㄩ柍褜鍓欓锝嗙節濮橆厼浜滅紒鐐妞存悂寮查鍕拺闁圭ǹ娴风粻鎾寸箾鐠囇呭埌閺佸牊淇婇妶鍛櫤闁稿鍓濈换婵囩節閸屾稑娅e銈忕到閵堟悂骞冩禒瀣垫晬婵炴垶蓱鐠囩偤姊虹拠鈥虫灍闁荤噦濡囬幑銏犫攽鐎n亞鍊為梺闈浤涢崘銊ヮ洭濠电姷鏁告慨鐑藉极閹间礁纾规い鏍仜閻掑灚銇勯幒鎴濐仼缁炬儳顭烽弻鐔煎礈瑜忕敮娑㈡煟閹惧娲撮柟顔筋殜閺佹劖鎯旈垾鑼晼濠电姭鎷冮崘顏冪驳闂侀€涚┒閸斿秶鎹㈠┑瀣窛妞ゆ洖鎳嶉崫妤呮⒒娴e憡璐¢柟铏尵閳ь剚姘ㄦ晶妤佺┍婵犲洤绠瑰ù锝堝€介妸鈺傜叆闁哄啠鍋撻柛搴$-缁辩偤骞掑Δ浣叉嫽闂佺ǹ鏈悷銊╁礂瀹€鍕厵闁惧浚鍋呭畷宀€鈧娲滈弫璇差嚕娴犲鏁囬柣鎰問閸炵敻姊绘担鑺ョ《闁革綇绠撻獮蹇涙晸閿燂拷...

式中ms为车身质量,mt为簧下质量,ks为悬架弹簧刚度,b为悬架阻尼系数,kt为轮胎刚度,u为悬架系统的主动控制力,q、xs、xt分别为路面垂向输入位移、车身位移和簧下质量位移。

选取系统状态变量X、输入变量U和输出变量Y分别为

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁惧墽鎳撻—鍐偓锝庝簼閹癸綁鏌i鐐搭棞闁靛棙甯掗~婵嬫晲閸涱剙顥氬┑掳鍊楁慨鐑藉磻濞戔懞鍥偨缁嬪灝鐎俊銈忕到閸燁偆绮诲☉妯忓綊鏁愰崨顔跨缂備礁顑勯懗鍓佹閹捐纾兼慨姗嗗厴閸嬫捇鎮滈懞銉モ偓鍧楁煥閺囨氨鍔嶉柟鍐茬焸濮婄粯鎷呴崨濠傛殘闂佽崵鍠嗛崕鎶藉箲閵忕媭娼ㄩ柍褜鍓欓锝嗙節濮橆厼浜滅紒鐐妞存悂寮查鍕拺闁圭ǹ娴风粻鎾寸箾鐠囇呭埌閺佸牊淇婇妶鍛櫤闁稿鍓濈换婵囩節閸屾稑娅e銈忕到閵堟悂骞冩禒瀣垫晬婵炴垶蓱鐠囩偤姊虹拠鈥虫灍闁荤噦濡囬幑銏犫攽鐎n亞鍊為梺闈浤涢崘銊ヮ洭濠电姷鏁告慨鐑藉极閹间礁纾规い鏍仜閻掑灚銇勯幒鎴濐仼缁炬儳顭烽弻鐔煎礈瑜忕敮娑㈡煟閹惧娲撮柟顔筋殜閺佹劖鎯旈垾鑼晼濠电姭鎷冮崘顏冪驳闂侀€涚┒閸斿秶鎹㈠┑瀣窛妞ゆ洖鎳嶉崫妤呮⒒娴e憡璐¢柟铏尵閳ь剚姘ㄦ晶妤佺┍婵犲洤绠瑰ù锝堝€介妸鈺傜叆闁哄啠鍋撻柛搴$-缁辩偤骞掑Δ浣叉嫽闂佺ǹ鏈悷銊╁礂瀹€鍕厵闁惧浚鍋呭畷宀€鈧娲滈弫璇差嚕娴犲鏁囬柣鎰問閸炵敻姊绘担鑺ョ《闁革綇绠撻獮蹇涙晸閿燂拷...

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁惧墽鎳撻—鍐偓锝庝簼閹癸綁鏌i鐐搭棞闁靛棙甯掗~婵嬫晲閸涱剙顥氬┑掳鍊楁慨鐑藉磻濞戔懞鍥偨缁嬪灝鐎俊銈忕到閸燁偆绮诲☉妯忓綊鏁愰崨顔跨缂備礁顑勯懗鍓佹閹捐纾兼慨姗嗗厴閸嬫捇鎮滈懞銉モ偓鍧楁煥閺囨氨鍔嶉柟鍐茬焸濮婄粯鎷呴崨濠傛殘闂佽崵鍠嗛崕鎶藉箲閵忕媭娼ㄩ柍褜鍓欓锝嗙節濮橆厼浜滅紒鐐妞存悂寮查鍕拺闁圭ǹ娴风粻鎾寸箾鐠囇呭埌閺佸牊淇婇妶鍛櫤闁稿鍓濈换婵囩節閸屾稑娅e銈忕到閵堟悂骞冩禒瀣垫晬婵炴垶蓱鐠囩偤姊虹拠鈥虫灍闁荤噦濡囬幑銏犫攽鐎n亞鍊為梺闈浤涢崘銊ヮ洭濠电姷鏁告慨鐑藉极閹间礁纾规い鏍仜閻掑灚銇勯幒鎴濐仼缁炬儳顭烽弻鐔煎礈瑜忕敮娑㈡煟閹惧娲撮柟顔筋殜閺佹劖鎯旈垾鑼晼濠电姭鎷冮崘顏冪驳闂侀€涚┒閸斿秶鎹㈠┑瀣窛妞ゆ洖鎳嶉崫妤呮⒒娴e憡璐¢柟铏尵閳ь剚姘ㄦ晶妤佺┍婵犲洤绠瑰ù锝堝€介妸鈺傜叆闁哄啠鍋撻柛搴$-缁辩偤骞掑Δ浣叉嫽闂佺ǹ鏈悷銊╁礂瀹€鍕厵闁惧浚鍋呭畷宀€鈧娲滈弫璇差嚕娴犲鏁囬柣鎰問閸炵敻姊绘担鑺ョ《闁革綇绠撻獮蹇涙晸閿燂拷...

三、自适应神经元控制器的设计

文献[6>提出了一种适于控制的自适应单神经元模型,它既可以利用神经网络的优点,又能适应于快速过程实时控制的要求。其相应的自适应神经元控制系统如图2所示。

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁惧墽鎳撻—鍐偓锝庝簼閹癸綁鏌i鐐搭棞闁靛棙甯掗~婵嬫晲閸涱剙顥氬┑掳鍊楁慨鐑藉磻濞戔懞鍥偨缁嬪灝鐎俊銈忕到閸燁偆绮诲☉妯忓綊鏁愰崨顔跨缂備礁顑勯懗鍓佹閹捐纾兼慨姗嗗厴閸嬫捇鎮滈懞銉モ偓鍧楁煥閺囨氨鍔嶉柟鍐茬焸濮婄粯鎷呴崨濠傛殘闂佽崵鍠嗛崕鎶藉箲閵忕媭娼ㄩ柍褜鍓欓锝嗙節濮橆厼浜滅紒鐐妞存悂寮查鍕拺闁圭ǹ娴风粻鎾寸箾鐠囇呭埌閺佸牊淇婇妶鍛櫤闁稿鍓濈换婵囩節閸屾稑娅e銈忕到閵堟悂骞冩禒瀣垫晬婵炴垶蓱鐠囩偤姊虹拠鈥虫灍闁荤噦濡囬幑銏犫攽鐎n亞鍊為梺闈浤涢崘銊ヮ洭濠电姷鏁告慨鐑藉极閹间礁纾规い鏍仜閻掑灚銇勯幒鎴濐仼缁炬儳顭烽弻鐔煎礈瑜忕敮娑㈡煟閹惧娲撮柟顔筋殜閺佹劖鎯旈垾鑼晼濠电姭鎷冮崘顏冪驳闂侀€涚┒閸斿秶鎹㈠┑瀣窛妞ゆ洖鎳嶉崫妤呮⒒娴e憡璐¢柟铏尵閳ь剚姘ㄦ晶妤佺┍婵犲洤绠瑰ù锝堝€介妸鈺傜叆闁哄啠鍋撻柛搴$-缁辩偤骞掑Δ浣叉嫽闂佺ǹ鏈悷銊╁礂瀹€鍕厵闁惧浚鍋呭畷宀€鈧娲滈弫璇差嚕娴犲鏁囬柣鎰問閸炵敻姊绘担鑺ョ《闁革綇绠撻獮蹇涙晸閿燂拷...

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁惧墽鎳撻—鍐偓锝庝簼閹癸綁鏌i鐐搭棞闁靛棙甯掗~婵嬫晲閸涱剙顥氬┑掳鍊楁慨鐑藉磻濞戔懞鍥偨缁嬪灝鐎俊銈忕到閸燁偆绮诲☉妯忓綊鏁愰崨顔跨缂備礁顑勯懗鍓佹閹捐纾兼慨姗嗗厴閸嬫捇鎮滈懞銉モ偓鍧楁煥閺囨氨鍔嶉柟鍐茬焸濮婄粯鎷呴崨濠傛殘闂佽崵鍠嗛崕鎶藉箲閵忕媭娼ㄩ柍褜鍓欓锝嗙節濮橆厼浜滅紒鐐妞存悂寮查鍕拺闁圭ǹ娴风粻鎾寸箾鐠囇呭埌閺佸牊淇婇妶鍛櫤闁稿鍓濈换婵囩節閸屾稑娅e銈忕到閵堟悂骞冩禒瀣垫晬婵炴垶蓱鐠囩偤姊虹拠鈥虫灍闁荤噦濡囬幑銏犫攽鐎n亞鍊為梺闈浤涢崘銊ヮ洭濠电姷鏁告慨鐑藉极閹间礁纾规い鏍仜閻掑灚銇勯幒鎴濐仼缁炬儳顭烽弻鐔煎礈瑜忕敮娑㈡煟閹惧娲撮柟顔筋殜閺佹劖鎯旈垾鑼晼濠电姭鎷冮崘顏冪驳闂侀€涚┒閸斿秶鎹㈠┑瀣窛妞ゆ洖鎳嶉崫妤呮⒒娴e憡璐¢柟铏尵閳ь剚姘ㄦ晶妤佺┍婵犲洤绠瑰ù锝堝€介妸鈺傜叆闁哄啠鍋撻柛搴$-缁辩偤骞掑Δ浣叉嫽闂佺ǹ鏈悷銊╁礂瀹€鍕厵闁惧浚鍋呭畷宀€鈧娲滈弫璇差嚕娴犲鏁囬柣鎰問閸炵敻姊绘担鑺ョ《闁革綇绠撻獮蹇涙晸閿燂拷...
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁惧墽鎳撻—鍐偓锝庝簼閹癸綁鏌i鐐搭棞闁靛棙甯掗~婵嬫晲閸涱剙顥氬┑掳鍊楁慨鐑藉磻濞戔懞鍥偨缁嬪灝鐎俊銈忕到閸燁偆绮诲☉妯忓綊鏁愰崨顔跨缂備礁顑勯懗鍓佹閹捐纾兼慨姗嗗厴閸嬫捇鎮滈懞銉モ偓鍧楁煥閺囨氨鍔嶉柟鍐茬焸濮婄粯鎷呴崨濠傛殘闂佽崵鍠嗛崕鎶藉箲閵忕媭娼ㄩ柍褜鍓欓锝嗙節濮橆厼浜滅紒鐐妞存悂寮查鍕拺闁圭ǹ娴风粻鎾寸箾鐠囇呭埌閺佸牊淇婇妶鍛櫤闁稿鍓濈换婵囩節閸屾稑娅e銈忕到閵堟悂骞冩禒瀣垫晬婵炴垶蓱鐠囩偤姊虹拠鈥虫灍闁荤噦濡囬幑銏犫攽鐎n亞鍊為梺闈浤涢崘銊ヮ洭濠电姷鏁告慨鐑藉极閹间礁纾规い鏍仜閻掑灚銇勯幒鎴濐仼缁炬儳顭烽弻鐔煎礈瑜忕敮娑㈡煟閹惧娲撮柟顔筋殜閺佹劖鎯旈垾鑼晼濠电姭鎷冮崘顏冪驳闂侀€涚┒閸斿秶鎹㈠┑瀣窛妞ゆ洖鎳嶉崫妤呮⒒娴e憡璐¢柟铏尵閳ь剚姘ㄦ晶妤佺┍婵犲洤绠瑰ù锝堝€介妸鈺傜叆闁哄啠鍋撻柛搴$-缁辩偤骞掑Δ浣叉嫽闂佺ǹ鏈悷銊╁礂瀹€鍕厵闁惧浚鍋呭畷宀€鈧娲滈弫璇差嚕娴犲鏁囬柣鎰問閸炵敻姊绘担鑺ョ《闁革綇绠撻獮蹇涙晸閿燂拷...

四、仿真计算及分析

根据以上自适应神经元控制算法,利用Matlab615中的Simulink510工具箱,通过搭建系统模块来实现模拟仿真,所得自适应神经元控制器的Simulink仿真模型见图3。为证实其减振效果,还与被动悬架、传统的PID控制悬架进行了性能对比。


闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁惧墽鎳撻—鍐偓锝庝簼閹癸綁鏌i鐐搭棞闁靛棙甯掗~婵嬫晲閸涱剙顥氬┑掳鍊楁慨鐑藉磻濞戔懞鍥偨缁嬪灝鐎俊銈忕到閸燁偆绮诲☉妯忓綊鏁愰崨顔跨缂備礁顑勯懗鍓佹閹捐纾兼慨姗嗗厴閸嬫捇鎮滈懞銉モ偓鍧楁煥閺囨氨鍔嶉柟鍐茬焸濮婄粯鎷呴崨濠傛殘闂佽崵鍠嗛崕鎶藉箲閵忕媭娼ㄩ柍褜鍓欓锝嗙節濮橆厼浜滅紒鐐妞存悂寮查鍕拺闁圭ǹ娴风粻鎾寸箾鐠囇呭埌閺佸牊淇婇妶鍛櫤闁稿鍓濈换婵囩節閸屾稑娅e銈忕到閵堟悂骞冩禒瀣垫晬婵炴垶蓱鐠囩偤姊虹拠鈥虫灍闁荤噦濡囬幑銏犫攽鐎n亞鍊為梺闈浤涢崘銊ヮ洭濠电姷鏁告慨鐑藉极閹间礁纾规い鏍仜閻掑灚銇勯幒鎴濐仼缁炬儳顭烽弻鐔煎礈瑜忕敮娑㈡煟閹惧娲撮柟顔筋殜閺佹劖鎯旈垾鑼晼濠电姭鎷冮崘顏冪驳闂侀€涚┒閸斿秶鎹㈠┑瀣窛妞ゆ洖鎳嶉崫妤呮⒒娴e憡璐¢柟铏尵閳ь剚姘ㄦ晶妤佺┍婵犲洤绠瑰ù锝堝€介妸鈺傜叆闁哄啠鍋撻柛搴$-缁辩偤骞掑Δ浣叉嫽闂佺ǹ鏈悷銊╁礂瀹€鍕厵闁惧浚鍋呭畷宀€鈧娲滈弫璇差嚕娴犲鏁囬柣鎰問閸炵敻姊绘担鑺ョ《闁革綇绠撻獮蹇涙晸閿燂拷...

所用的悬架模型参数名义值[10>ms=240kg,mt=36kg,ks=16kN/m,b=980N·s /m,kt=160kN/m。以C级路面的垂直速度为激励输入进行仿真。路面不平度系数Gq(n0)=256×10-6m2/m-1,车速v=20m /s,参考空间频率n0=0.1m-1,速度功率谱密度为一白噪声Gq·(f)=4π2Gq(n0)n20v。仿真中神经元控制器参数为:学习速率 d1=30,d2=63.3,d3=15.9;比例系数k=148.7;采样周期为0.01s。

仿真时,先对模型参数取名义值进行验证;然后将悬架参数的车身质量增加20%,同时轮胎刚度下降20%,考察控制器在模型参数变化时的适应能力。以上两种情况着重考察车身加速度响应,见图4及图5;根据悬架系统时域输出仿真数据,计算车身加速度、悬架动挠度、车轮动位移的均方根值及综合性能指数J,如表 1所示。

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁惧墽鎳撻—鍐偓锝庝簼閹癸綁鏌i鐐搭棞闁靛棙甯掗~婵嬫晲閸涱剙顥氬┑掳鍊楁慨鐑藉磻濞戔懞鍥偨缁嬪灝鐎俊銈忕到閸燁偆绮诲☉妯忓綊鏁愰崨顔跨缂備礁顑勯懗鍓佹閹捐纾兼慨姗嗗厴閸嬫捇鎮滈懞銉モ偓鍧楁煥閺囨氨鍔嶉柟鍐茬焸濮婄粯鎷呴崨濠傛殘闂佽崵鍠嗛崕鎶藉箲閵忕媭娼ㄩ柍褜鍓欓锝嗙節濮橆厼浜滅紒鐐妞存悂寮查鍕拺闁圭ǹ娴风粻鎾寸箾鐠囇呭埌閺佸牊淇婇妶鍛櫤闁稿鍓濈换婵囩節閸屾稑娅e銈忕到閵堟悂骞冩禒瀣垫晬婵炴垶蓱鐠囩偤姊虹拠鈥虫灍闁荤噦濡囬幑銏犫攽鐎n亞鍊為梺闈浤涢崘銊ヮ洭濠电姷鏁告慨鐑藉极閹间礁纾规い鏍仜閻掑灚銇勯幒鎴濐仼缁炬儳顭烽弻鐔煎礈瑜忕敮娑㈡煟閹惧娲撮柟顔筋殜閺佹劖鎯旈垾鑼晼濠电姭鎷冮崘顏冪驳闂侀€涚┒閸斿秶鎹㈠┑瀣窛妞ゆ洖鎳嶉崫妤呮⒒娴e憡璐¢柟铏尵閳ь剚姘ㄦ晶妤佺┍婵犲洤绠瑰ù锝堝€介妸鈺傜叆闁哄啠鍋撻柛搴$-缁辩偤骞掑Δ浣叉嫽闂佺ǹ鏈悷銊╁礂瀹€鍕厵闁惧浚鍋呭畷宀€鈧娲滈弫璇差嚕娴犲鏁囬柣鎰問閸炵敻姊绘担鑺ョ《闁革綇绠撻獮蹇涙晸閿燂拷...

闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁惧墽鎳撻—鍐偓锝庝簼閹癸綁鏌i鐐搭棞闁靛棙甯掗~婵嬫晲閸涱剙顥氬┑掳鍊楁慨鐑藉磻濞戔懞鍥偨缁嬪灝鐎俊銈忕到閸燁偆绮诲☉妯忓綊鏁愰崨顔跨缂備礁顑勯懗鍓佹閹捐纾兼慨姗嗗厴閸嬫捇鎮滈懞銉モ偓鍧楁煥閺囨氨鍔嶉柟鍐茬焸濮婄粯鎷呴崨濠傛殘闂佽崵鍠嗛崕鎶藉箲閵忕媭娼ㄩ柍褜鍓欓锝嗙節濮橆厼浜滅紒鐐妞存悂寮查鍕拺闁圭ǹ娴风粻鎾寸箾鐠囇呭埌閺佸牊淇婇妶鍛櫤闁稿鍓濈换婵囩節閸屾稑娅e銈忕到閵堟悂骞冩禒瀣垫晬婵炴垶蓱鐠囩偤姊虹拠鈥虫灍闁荤噦濡囬幑銏犫攽鐎n亞鍊為梺闈浤涢崘銊ヮ洭濠电姷鏁告慨鐑藉极閹间礁纾规い鏍仜閻掑灚銇勯幒鎴濐仼缁炬儳顭烽弻鐔煎礈瑜忕敮娑㈡煟閹惧娲撮柟顔筋殜閺佹劖鎯旈垾鑼晼濠电姭鎷冮崘顏冪驳闂侀€涚┒閸斿秶鎹㈠┑瀣窛妞ゆ洖鎳嶉崫妤呮⒒娴e憡璐¢柟铏尵閳ь剚姘ㄦ晶妤佺┍婵犲洤绠瑰ù锝堝€介妸鈺傜叆闁哄啠鍋撻柛搴$-缁辩偤骞掑Δ浣叉嫽闂佺ǹ鏈悷銊╁礂瀹€鍕厵闁惧浚鍋呭畷宀€鈧娲滈弫璇差嚕娴犲鏁囬柣鎰問閸炵敻姊绘担鑺ョ《闁革綇绠撻獮蹇涙晸閿燂拷...


由图4和表1可知,在名义参数情况下,两种主动悬架都能有效地降低车身加速度,改善平顺性。尽管悬架动挠度有所增大,但车辆的综合性能仍得到了改进。而且,自适应神经元控制下的车轮动位移也有一定程度的改善,其综合减振效果要明显优于PID控制。由图5和表1可见,在悬架参数变化时,两种主动悬架仍然都能减少车身加速度,有效地改善平顺性。自适应神经元控制的减振效果仍然优于PID控制。由此表明:自适应神经元控制能有效地跟随模型参数的变化,将车身加速度控制在一个较好的范围内,降低了参数不确定性对车辆平顺性能的影响;虽然神经元控制的悬架动挠度、车轮动位移相对被动悬架有所增大,但相对PID控制仍有改善,尤其是其综合性能也得到了改进。

五、结论

(1)车辆主动悬架的自适应神经元控制器的仿真结果表明:该控制器能有效地改善车辆的综合性能,尤其是车辆运行的平顺性和舒适性,而且鲁棒性好,对模型参数的变化具有一定的适应性,便于实现和应用。
(2)需要进一步研究控制器对不同路面激励的适应性,以完善主动悬架的性能。
(3)应对控制过程的实用化作深一步的研究,比如考虑作动器的非线性、时滞等因素的影响。
灏勯涓撲笟鍩硅鏁欑▼鎺ㄨ崘

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top