如何为汽车电子系统设计成本低廉的电源
气囊的电源供应系统 图 3:气袋系统的电源分配结构 - 系统电路图 图 4:可提供多个输出的配置
即使是小型的汽车目前都设有6个气囊,而且所采用的安全标准要求极高。负责为气囊充气的是一款称为爆管驱动器(squib driver)的特别芯片,该芯片必须能够在撞车的紧急关头立即启动。按照图1所示,气囊系统由多个部分组成。
爆管驱动器设于车厢之内,而电池则设于车头盖之下。撞车时,爆管驱动器与电池之间的线路连接可能会因为撞击而断开,因此安全电容器一般会设于爆管驱动器的旁边,以便驱动器的附近有足够的储电可以提供动力,为气囊充气。
以下简单介绍气囊系统的充气过程。气囊系统设有升压转换器,一般来说,这些升压转换器都采用 sepic拓扑(sepic拓扑要求电路中采用两个电感) 或回扫拓扑结构(回扫拓扑中需要采用一个变压器)。进行充气之前,气囊系统的升压转换器会先将电池电压(Vbat)提高(这个电池电压在负载突降时可高达 40伏),直至达到安全电压(Vsafe)要求的电平,这样可确保安全电容器储存大量电能(见图2)。之后才将这个较高的安全电压调低至几伏,这个较低的电压称为远程电压(Vremote)。必须严格按照这个充气准备程序,以确保其后几级的低压降稳压器出现较少压降。压降越少,功耗也就越低,效率也就越高。
LM9076稳压器芯片则适用于更高温的工作环境,其接面温度可高达150℃。这款稳压器可利用8伏的输入电压输出150mA的电流及5伏的电压。在额定的工作温度及负载范围内,这款稳压器芯片可以保持极高的输出电压准确度(高达2%)。由于这个结构采用了安全电容器,因此工作时更为安全可靠。从成本的角度看,采用远程低压降稳压器无需加设任何散热器,因此有助节省成本。由于Vsafe(Vbat(最高值),而一级转换器可用作升压转换器,因此无需采用布局较为复杂的sepic或回扫式的转换器。降压转换器适用于降压稳压器,后者成本也较低。由于低压降稳压器无需利用高压电源,因此有多种不同的 CMOS或低电压双极芯片可供选择。
有多个不同电压输出可供选择
我们若采用开关稳压器作为输入级,再以多个低压降稳压器提供输出,便可降低电源系统的整体成本。高功率的电源系统甚至必须采用这样的设计。图4是其中一个示例。
Vlocal必须低至可以确保低压降稳压器不会耗散太多功率。Iout(最高值)=(Tj-Ta)/(((j,a)*(Vin-Vout))
只有在整体电压超过指定压降的情况下低压降稳压器才会将电压稳定下来,因此Vlocal必须比Vx+VDox高。
本文总结
电源若采用恰当的设计,将有助降低系统开发的总体成本。若应用环境极为恶劣,例如在电池电压、输出电流以及温度等都处于极高水平的情况下,我们必须考虑采用多转换级的结构。目前市场上有很多专为汽车电源供应系统而设的稳压器芯片可供选择。采用WEBENCH等免费的网上设计工具也有助降低设计成本以及缩短产品的上市时间。汽车厂商都希望缩短新车的设计周期,因此稳压器芯片将会更受汽车厂商的欢迎。即使是同一辆汽车,不同的子系统在实际应用时也各有不同的局限,因此设计这些电子系统的工程师必须对这方面有相当的认识。
- 基于XC164的六通道ABS开发板设计(11-25)
- 本田(HONDA)奥德赛(ODYSSEY)轿车电路—防抱死制动控制系统(上)(11-30)
- FPGA技术在汽车电子中的应用(11-26)
- 本田(HONDA)奥德赛(ODYSSEY)轿车电路—防抱死制动控制系统(中)(11-30)
- 本田(HONDA)奥德赛(ODYSSEY)轿车电路—防抱死制动控制系统(下)(11-30)
- 汽车发动机控制器(ECU)中待测项目综述(01-10)