微波EDA网,见证研发工程师的成长!
首页 > 应用设计 > 汽车电子 > IGBT-汽车点火系统中的佼佼者

IGBT-汽车点火系统中的佼佼者

时间:01-10 来源:安森美半导体 Klaus Reindl 点击:

主要的可靠性参数

点火应用的可靠性是最重要的,尽管因为其内在的冗余性,如有一个笔形线圈发生故障,并不会危及寿命。鉴于它们是和柱体模块紧密接触的,笔形线圈的环境十分严格:环境温度最高为140°C,功耗路径有限,持续震动。此外还有来自正向脉冲工作和反向有源钳位的周期性电应力。虽然数据表清楚地列出了Tj最大值为175°C,但众所周知,特定的工作条件已远远超出了这一限制。未指定的短期温度偏移高达250°C,而且在一个点火IGBT的使用寿命中,可能发生的温度偏移会更大。

但是,现场故障率必须保持在几个ppm的范围内。稳健性可以通过几个SOA(安全工作区域)额定值进行规定,以一种复杂、互动的方式由不同的参数确定:P-tub掺杂分布图,MOSFET几何尺寸,N层中的载流子寿命,NPN/PNP结构的hfe等,不一而足。

正向偏置的SOA被高电流引起的故障模式所限制,其中NPN结构上P-tub偏置中过量的主载流子会造成"寄生"NPNP半导体闸流管的闩锁,在设计时可避免这一效应的产生,但仍然可能在局部区域内由点缺陷(point defect)引起。从根本上杜绝这一效应的方法是通过连续改进项目来消除晶圆生产中的缺陷密度。用大大超过额定值的连续电流在最终测试时进行脉冲测试可确保质量。

反向偏置的SOA受到N层电场持续性的限制,在切换到反向条件中时,MOSFET电子流快速关闭,使N层充满少子,从而可有效降低雪崩击穿电压的可能性。

另一个在点火应用中常见的SOA是UIS(自钳制电感性开关)。开路次级(如开路火花塞连接)会把100%的次级能量(减去线圈损耗)反射回IGBT。数据表规定了"单脉冲集电极到发射极雪崩能量"。安森美半导体可根据芯片尺寸,保证在启动结温为25/150°C时最大能量为500mJ/300mJ。典型值最少为它的两倍。

即使最小的电路小片尺寸也能在所有额定温度范围中保持200mJ的UIS能量,最高温度高达TJ =175°C。目前笔形线圈的实际要求为100~150mJ。

图5显示了第三代IGBT的UIS功能,它具有更平缓的温度依赖性,可以通过细致的优化改进和晶圆制造参数的精密设计获得。为了确保质量,在最终测试中,每个部分需进行2次峰值电流为26A的UIS测试,以便排除任何潜在的损坏部分。并记录测试中的故障,作为可靠性监视。

稳健性还意味着承受主要发生在板流水线前的ESD事件。ESD损害可以是立即发生的,会导致大量可检测的栅极漏电。但是更危险的是由ESD引起的栅极电介质的潜在损害,这会引起较低过压电平下的现场故障。有了栅极到发射极的背靠背多晶硅,就可以确保符合人体/机器模型的8kV/800V ESD保护。

增强型无故障操作可提供集成的VGE下拉电阻,防止IGBT在没有控制信号连接时意外打开。电阻可以进行定制,以保护外部元件。

可以选择集成一个串联栅极电阻,以限制出现过大的dVCE/dt,但在某些应用中可能会引起瞬时电流和UIS故障。而且这种集成的Rg可避免非最优预驱动设计的负面作用,从而提供了栅极到地的低阻抗通路。Rg确保IGBT在钳制条件下能安全地打开和关闭。

点火IGBT的发展趋势

塞上线圈将成为近期发展的主流。高性能的系统会转向匝数比在1:100左右的小型化线圈,并需要更高的初级电流(高达18A)和更高的钳制电压(400V左右),以便提供燃料空气混合物的高火花能量。满足这些应用的第三代器件NGX19N40,具有19A的连续电流和额定值为405V的钳制电压。它有TO-220 和D2PAK两种封装,都有0.9K/W的稳态热电阻结。最近,第四代(NGX820X系列)更进一步改良,采用DPAK封装的IGBT能获得所需的功能和稳健性,从而推动了装配技术的全新自由度,同时还减少板面积(达60%)和成本。

中期发展的趋势尚未成形。对于不同的点火系统,差别很大。其共同的特点是功能 "智能性"的增强。但是在IGBT芯片中集成任何额外的电路都必须与已有元件兼容,并不会改变其优化的IGBT结构:大量N沟道FET和IGBT的N层(在源和地靠近的环境中,唯一可能的电路)、二极管和电阻(有不同的页面阻抗和TC的P+和N+)共享主体。

已能轻易集成的功能有:带有2个背靠背二极管的温度感测,它可以为MCU提供和电路小片温度成正比的压降。与PowerFET原理相同的电流检测:精确的几何比例规定了小镜像电流(主电流的0.3到1%),可由集成的检测电阻几乎无损地对其进行检测,然后传送到MCU。这两种检测功能的缺点是需要更多的连接,且不能使用高容量、高性价比的3端子电源封装的重负荷。

要集成更复杂的功能是极具挑战性的,或者根本不可能实现。这里,我们讨论的功能包括温度过高关闭、过流检测/标志/限制、可选的钳制电压、停留时间看守、故障模式中的斜升关闭、由42VPowerNet供电的未来点火软打开等。有些要求相互矛盾,如硬OTSD和斜升关闭。而且显然每种智能IGBT类型所匹配的应用有限,因此就丧失了规模经济性。

总之,最佳的解决方案是采用一个优化的、非智能IGBT和一个线性双极性或LinCMOS智能预驱动器,作为MCU和IGBT之间的接口来提供驻留保护和控制特性。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top