微波EDA网,见证研发工程师的成长!
首页 > 应用设计 > 汽车电子 > 混合型和燃料电池型汽车的电子设计挑战分析

混合型和燃料电池型汽车的电子设计挑战分析

时间:01-10 来源:Joe Lemieux 点击:

成本和功耗

汽车是成本敏感型产品,其价格压力一直延伸到各个部件的设计。因为混合型车辆包括传统的功率供给系统和电力系统(电动机和电池),消费者实际需要购买两个功率供给系统。尽管降低燃料消耗所带来的成本节省在某种程度上可以抵消这个高昂的附加费用,但市场将依然要求能保持较低的初始成本。

功率管理面临两个重大的挑战。传统汽车所面临的挑战依然没有改变:降低每个控制器的功耗并把过多的热量排放出去。由于需要驱动外部执行器,驱动器电路是有名的高功率部分,而且为避免损坏电子线路,必须把它所产生的热量散掉。此外,把电动机加到车辆中意味着有更多的能量必须被耗散。

这个新的挑战源于汽车的设计目标--提高燃料效率。车辆中的嵌入式系统必须具有非常高的效率且只需很少能量就可以运行。如果通过关闭发动机来节省的能量随后又在保持控制器或执行器运行的过程中被浪费掉(特别是在不需要执行器的情况),这样做就毫无意义了。

为提高电池的使用寿命,许多电池供电的嵌入式设备在处于空闲状态时使用各种算法进入低功率模式。在混合型或燃料电池型车辆中,即使这个少量的能量节省也不能放弃,尤其当处理器总数已经给定的时候。通过在软件等待任务时进入低功率状态,嵌入式控制系统可对提高整个系统的能量效率做出贡献。

图3:燃料电池供电系统

运行环境

控制汽车的电子部分必须在高/低温和强震动的严酷环境中工作。传统汽车电子设备的供应商熟悉这个环境。如罩内(underhood)电子设备(包括基于微控制器的系统)的温度范围规定为-40到125°C。在许多情况下这个温度被错误地看成是罩内环境温度,实际电子元件的额定温度。在非常严酷的条件下完成的测试表明,实际的罩内最高温度只有110°C,但此温度依然足以让水沸腾。

震动也是一个关键条件。以混合方式和燃料电池提供能量的车辆将第一次把电动机、电池和燃料电池的供应商带到汽车工业。这些新的供应商将不得不设计满足在许多情况下甚至可以同航空工业的要求相近的震动指标。

可靠性和耐久性

汽车电子设备需要在各种条件下可靠地运行,一般汽车要求10年/10万英里,卡车要求15年/15万英里(这些是典型数值,不同OEM厂商之间稍有差别)。

一些控制器实际上从不关闭,它们在节能状态继续运行,甚至当汽车停止使用时也是如此。

安全性

许多原告和律师正在核查是否某个有缺陷的设计导致了事故的发生并希望能够起诉工程师的雇主以获得赔偿金。这种核查和法律诉讼的风险迫使汽车工程师度过了许多不眠之夜。为保证设计在所有条件下(甚至当某个部件失效时)都是安全的,他们必须花费数万工程小时进行故障模式/后果分析(FMEA)和故障树分析(FTA)。

另一个安全特性是车辆不执行驾驶员无意做出的任何动作。随着把司机同设备分离开来的"线控(by-wire)"系统的出现,安全性已经成为一个更受关注的课题。混合型和燃料电池型系统天生就是线控驱动、线控刹车和线控驾驶的系统。在许多情况下,这将需要容错系统设计和冗余设计。

设计工具

借助于UML、Matlab/Simulink和AscetSD等建模工具,你可以开发出具有功能强大的产品。特别值得一提的是,这种方法有一个重大优点:可以在工作站上对系统进行离线仿真。通过建模,我们可以通过在项目的早期进行可靠性、安全性分析来保证系统在所有条件下正常工作,而不必等到在进行最终产品测试时才发现缺陷。

为了在实际车辆上进行测试,许多已经公布的早期概念车设计已经使用了Matlab/Simulink并在快速原型系统上使用了自动代码生成。主要的障碍将是把这个知识产权全部转换成满足所有前述挑战的可生产代码(production-ready code)。

依靠预先在设计层所做的系统仿真,当各种部件到位后,我们就可以在多种环境和多种出错情况下测试系统的功能。当软件进入最终的汽车产品时,我们已经完成了广泛的测试和开发并可以使用该车辆来验证这个模型而不是开发控制系统。这并不意味着不需要进行车辆级验证,但这样做将可以降低风险并改善最终系统的质量。

因为仿真软件将直接在建模环境下运行很多次,因此仿真和建模可以很好协同工作。这里所面临的最大的挑战是建立确实代表所仿真的设备而且具有足够高的仿真效率的仿真模型,以至于可以在合理的时间内完成仿真。

当然,还需要察看混合型或燃料电池型汽车设计的所有挑战是否都可以在这些产品中得到满足,从而使得用户乐于拥有和驾驶这些产品。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top