微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 行业新闻动态 > 谷歌TPU和英伟达GPU都来抢市场,英特尔能靠FPGA稳住吗?

谷歌TPU和英伟达GPU都来抢市场,英特尔能靠FPGA稳住吗?

时间:08-25 来源:3721RD 点击:

是为了用在游戏图形渲染中的,专用的设计让它们保持了CPU近似水平的功耗,但是在神经网络训练中的计算速度要比CPU高很多。现在GPU就和CPU联手负责计算机中的运算。

英伟达借着这个机会大举扩张,向美国以及全世界的科技公司销售了大量的GPU,中国公司的购买数量尤为惊人。英伟达季度营收中数据中心业务的部分,在过去的一年中翻了3倍,超过了4亿美元。

"有点像是互联网刚兴起的那时候就走对了路",黄仁勋在最近的一个采访中说。换句话说,科技界的局势正在快速改变,英伟达正处在这场改变的中心。

创造专用芯片

GPU是各个公司训练神经网络的重要基石,不过这也只是整个过程中的一部分。当神经网络训练完毕以后就可以开始执行任务,这时候需要的计算能力又有所不同。

比如,在训练好一个语音识别算法以后,微软会把它作为一个线上服务提供出来,然后它就可以开始识别人们讲给自己手机的指令。GPU在这种时候就没有那么高效了。所以很多公司现在都开始制造专门用于执行所学到的东西的芯片。

谷歌造了自己的专用芯片:TPU。英伟达也在造类似的芯片。微软在继续对 FPGA 芯片重新编程来让它们更适合运行神经网络,这些芯片来自英特尔收购的 Altera。

其它的公司也在后面追赶。专做智能手机用的ARM芯片的高通,以及数量客观的初创公司都在研发AI芯片,希望能在这个快速成长的市场中分一杯羹。根据科技调研公司 IDC 预计,到2021年,带有替代计算芯片的服务器将达到68亿美元的销售额,大致是整个服务器市场的十分之一。

Bart Sano 表示目前 TPU 也只是谷歌整个网络运营里的一小部分

Doug Burger 透露,在微软全球的服务器网络中,替代计算芯片只占了所有运营中很小的一部分。谷歌的网络软硬件研发工程副总裁 Bart Sano 表示谷歌的数据中心也是类似的状况。

英特尔实验室的主管 Mike Mayberry 已经向着替代计算芯片开始发起努力。可能是因为英特尔占据着数据中心市场90%的市场份额,从而也是传统芯片的最大的销售商。他说,如果对CPU做一些适当的修改,它们也可以应对新的任务而无需其它帮助。

不过这个硅片的新浪潮扩散得很快,英特尔的市场地位也越来越纠结。它一方面否认市场正在发生变化,但是又或多或少地转换着自己的业务避免掉队。2年前,英特尔花费了高达167亿美元收购了Altera,这家公司造的就是微软使用的FPGA。这是英特尔历史上最大的收购。去年,英特尔又收购了一家开发专门用于神经网络的公司 Nervana,据说又花了超过4亿美元。如今,在Nervana团队的领导下,英特尔也在开发一款专门用于神经网络训练和执行的芯片。

硅谷风投公司红杉资本的合伙人 Bill Coughran 在过去的接近10年中为谷歌的互联网基础设施出谋划策,他的工作内容基本针对的就是英特尔。他表示,"他们都有大公司病,他们需要想清楚如何踏入这片新的、成长中的领域,而且还不损害他们的传统业务。"

当英特尔内部高管们讨论摩尔定律失效的状况时,他们内部的混乱连公司外的人都看得到。在近期一次纽约时报的采访中,Nervana创始人、现在已是英特尔高管的Naveen Rao表示,英特尔其实可以让摩尔定律"再坚持几年"。从官方口径上讲,英特尔的姿态是传统芯片的改善在未来10年都还可以顺利地进行下去。

英特尔实验室的主管 Mike Mayberry 则表示加一两块芯片不是什么新鲜事了,他说以前的电脑里就有单独的芯片来处理声音之类的事情。

不过现在的趋势要比以前大多了,而且从新的层面上改变着这个市场。英特尔面前的竞争对手不仅有英伟达和高通的这样的芯片制造商,还有谷歌和微软这样一直以来都相当"软"的公司。谷歌已经在设计第二代的TPU芯片了。根据谷歌的说法,今年晚些时候,任何谷歌云计算服务的客户或者开发者都可以在新的TPU芯片上面运行他们自己的软件。

虽然目前这些事情都还只发生在消费者视野之外的大型数据中心里,但是这对整个IT工业体系产生广泛的影响恐怕只是时间问题。人们最期待的是,随着新型移动芯片的到来,手持设备也可以独立完成更多、更复杂的任务,不再需要把任务交给几百公里外的数据中心,无论是智能手机无需互联网也能识别语音指令,还是无人驾驶汽车可以用现在无法企及的速度和精度识别周边的世界。

换句话说,无人驾驶汽车少不了摄像头和雷达,但是同样少不了一颗好的大脑。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top