微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 行业新闻动态 > 麒麟970亮相,余承东这样介绍华为AI芯

麒麟970亮相,余承东这样介绍华为AI芯

时间:08-03 来源:机器之心 点击:

算单元需要与已有的其他计算单元互相配合。在研发过程中,华为应该花费了很长时间来让 NPU 适用于处理常见应用任务。此前,CPU 与 GPU 之间的资源共享也应该经历了相当长的一段时间,而 NPU 也面临着同样的挑战。相信在未来,NPU 与其他组件的整合程度也会不断提升。

API 与深度学习框架

目前,人工智能技术还没有发展到全面步入应用的程度,大多数研究者致力于研究深度学习框架和算法的优化。在研发芯片时,华为的工程师们发现目前 AI 的应用方向非常分散。面对这样的挑战,麒麟 970 提供了 HiAI 移动计算平台,可以把所有的计算资源统一调配管理,面向上层可以向很多应用提供接入方式。

对于麒麟 970 的 HiAI 移动计算平台而言,AI 应用开发者可以直接调用 HiAI 计算加速库以及接口,获得 HiAI 异构平台的计算加速。同时也可以基于谷歌安卓 NN API 调用 HiAI 硬件平台加速能力来执行自己的任务,它们同样可以被华为的新一代 NPU 加速。据悉,谷歌今年底推出的安卓 NN API 也将率先获得麒麟 970 的支持。

华为不久后还会提供更高层级的 API,把语音识别、自然语言处理和图像识别的基础 AI 功能以特定 API 形式提供给开发者使用。在华为设想的图景中,未来各类应用都可以接入搭载 AI 芯片的设备,并享受硬件优势带来的性能提升。

据相关人士表示,在麒麟 970 芯片发布之后,相应的 API 也将在近期内发布。

在人工智能芯片计划中,搭载 NPU 的智能芯片将支持多种深度学习框架,并在未来支持多框架下的算子。实际上,人工智能芯片优化的级别是算子级的。目前,麒麟 970 支持的框架有 TensorFlow 和 Caffe。在不久后,麒麟 970 支持的框架还将包括 Caffe2 和 TensorFlow Lite。

虽然麒麟 970 才刚刚发布,但目前已经出现被这款芯片优化的应用了--在华为手机的前端 DNN 降噪算法中,它可以通过深度学习 DNN 算法,有效抑制非稳态噪音,增强语音信号,可以提高其语音识别在恶劣环境下的识别率。特别是在开车的时候,如果车速非常快(比如达到 120 千米/小时),车内的噪音很大,通常情况下手机的语音识别成功率会非常低,而华为开发的技术则是专门针对这样的痛点场景去改善和优化。未来,华为会在语音和图像领域中开放常用的各种算法接口。

麒麟 970 芯片能够使用的各种 AI 应用会越来越丰富,华为表示,他们也正在与很多其它公司合作,共同开发出更多的应用来,让消费者切身体验到 On Device AI 性能瓶颈突破后所带来的巨大改变。

搭载麒麟 970 的手机:华为Mate 10系列

在了解完芯片之后,我们最为关心的可能就是搭载这块芯片的手机型号了。根据发布会现场的信息,搭载麒麟 970芯片的手机为即将于 10 月 16 日发布的华为Mate 10 系列。

云+人工智能,目前是各大科技巨头极为重视的一个方向,华为也在着力布局人工智能云服务。云服务的优势在于数据存储,但机器学习应用将计算与存储任务交给云端时会产生如延迟、稳定性、安全性、隐私性等这样的弊端。在部署到手机端之后,结合终端计算优势,芯片和云服务各自负责不同的任务,弥补了云的缺陷。

华为认为,所有延迟、敏感类的应用都是需要在设备端进行处理的。另外,在网络连接不通的情况下,人们也需要依赖设备本地的处理能力。在安全的层面上,使用本地运算意味着无需将数据传送到服务器中,这样可以减少数据泄露的机会。

在云服务器端,我们可以看到谷歌、英伟达等公司已经推出了针对人工智能任务优化的新型芯片。在移动设备领域,麒麟 970 第一次将人工智能硬件带进了手机。移动端计算能力的提升会使人工智能的应用走出瓶颈,带来更多、更丰富的用户体验。

在发现移动端设备计算芯片是目前 AI 技术的瓶颈之后,华为率先投身其中,希望以此拉动一部分开发者基于新硬件为消费者们提供更好的体验。希望这些行动可以加速人工智能技术的发展,让 AI 逐渐形成基础技术平台,催生更多不同类型的应用。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top