与CPU比完之后,为啥说GPU才是自动驾驶和深度学习的关键?
U 计算性能的研究人员,必须把相关运算"黑进"图形 API,让显卡以为要处理的计算任务和游戏一样:决定像素色彩的图像渲染计算。
但一切在 2007 年发生了变化。这一年,英伟达发布了 CUDA(Compute Unified Device Architecture)。 它支持 C 语言环境的并行计算。对于那些靠 C 语言发家的程序猿,他们可以直接开始写基础的 CUDA 代码,一系列运算任务从此可以很容易地并行处理。
CUDA 诞生的结果是:似乎在一夜之间,地球上的所有超级计算机都采用了 GPU 运算。深度学习、自动驾驶以及其他 AI 领域开始焕发光芒。
并行计算
并行计算是发挥 GPU 性能的关键。这意味着你可以同时处理运算,而不是一步步进行。复杂问题可被分解为更简单的问题,然后同时进行处理。并行计算适用于 HPC 和超算领域所涉及的许多问题类型,比如气象、宇宙模型和DNA 序列。
并不是只有天体物理学家和气象学家才能充分利用并行计算的优点。事实证明,许多企业应用能从并行计算获得超出寻常比例的好处。这包括:
数据库查询
密码学领域的暴力搜索
对比不同独立场景的计算机模拟。
机器学习/深度学习
地理可视化
你可以联想一下你们公司所面临的数据问题--那些数据量和复杂程度极高,你以前连想都不敢去想怎么处理,但深层次分析很有可能会有助于解决的问题。我怀疑这样的问题是可并行计算的--而 CPU 层次的计算解决不了,不代表 GPU 也不行。
CPU vs. GPU 小结
作为小结,GPU 在以下方面有别于 CPU:
一枚 GPU 芯片有几千个核心。通常意义的 CPU 最多只有 22 个。
GPU 为高度并行的运行方式而设计。CPU 为一步步的连续计算而设计。
GPU 的内存带宽比 CPU 高得多。
CPU 适合于文字处理、运行交易数据库、网络应用等场景。 GPU 适用于 DNA 排序、物理建模、消费者行为预测等任务。
经济成本
上文中,我讨论了问什么 GPU 代表着计算的将来。但它的商用价值如何呢?
GPU 在经济成本上其实占优势。首先,一个完整的 GPU 服务器比一个完整的 CPU 服务器要贵很多。但两者之间难以直接对比。一个完整的 8 路 GPU 服务器,成本可达八万美元。但一个中等的 CPU 服务器配置大约只需要 9000 刀。当然,RAM 和 SSD 的使用量对价格有很大影响。
咋看之下,CPU 好像比 GPU 划算多了。但请注意,250 个这样的"中等" CPU 服务器在并行计算性能才相当与一台如上所说的 GPU 服务器(注:只是作者个人的估算,以支撑他的观点,大家看看就好)。
很明显,如果你要做的只是并行计算,选择 GPU 服务器要划算多了。极端情况下,如果硬要上 250 台 CPU 服务器,加上电费、场地费、网费、温控、维护管理费,最终价格会是天文数字。因此,如果并行计算占了公司工作量的大部分,从投资回报率的角度,GPU 是正确的选择。
对生产力的影响
在延迟对数据分析的影响方面,我已经写了很多。我的基本论点是:当一个开发者需要等待几分钟才能得到查询结果,人的行为会发生变化。你开始找捷径,你开始用更小的数据集执行查询操作,你只会执行不耗费时间的查询,你不再探索--执行几个查询就把这当做是方向。
提高计算机响应速度对生产力的提升很难衡量。但你可以想一想,宽带时代和拨号时代的生产力差别。
最后,在云时代,与其建立自己的 GPU 服务器, 租用 GPU 云计算服务对于很多客户来讲十分划算。GPU 计算的门槛已经无限降低。
更多最新行业资讯,欢迎点击《今日大事要闻》!
- 英特尔总裁唱衰晶圆代工业(02-23)
- ARM手机芯片市场份额已超90% 英特尔倍感压力(03-17)
- 中国正探寻如何快速进驻HPC芯片领域(03-23)
- 业界不惧英特尔3D晶体管来势汹涌(05-09)
- 第一季度全球20大芯片厂商排行榜出炉 (05-20)
- Q1全球20大芯片厂商排行榜出炉 英特尔夺回优势(05-20)