微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 行业新闻动态 > 生物特征识别技术的发展趋势及对数字信号处理器的挑战

生物特征识别技术的发展趋势及对数字信号处理器的挑战

时间:02-17 来源:电子产品世界 点击:

像平滑、二值化、图像细化等。

  特征提取的目的就是从预处理后的指纹图像中,提取出能够表达该指纹图像与众不同的特征点的过程。最初特征提取是基于图像的,从图像整体中提取出特征进行比较,但该方法的精度和性能较低。现在一般采用基于特征点的方法,从图像中提取反应指纹特性的全局特征(如纹形、模式区、核心区、三角点、纹数等)和局部特征(如终结点、分叉点、分歧点、孤立点、环点等)。得到特征点后就可以对特征点进行编码形成特征值模板。

  指纹特征值比对就是把当前获得的指纹特征值与存储的指纹特征值模板进行匹配,并给出相似度的过程。

虹膜识别

  虹膜相对而言是一个较新的生物特征。1983年,Flom与Safir申请了虹膜识别专利保护,使得虹膜识别方面的研究很少。1993年,Daugman发表了关于虹膜自动识别算法的开创性工作,奠定了世界上首个商业虹膜自动识别系统的基础。随着Flom和Safir专利在2005年的失效和CASIA及ICE2005中虹膜数据集的提供,虹膜识别算法的研究越来越蓬勃。ICE2006首次对虹膜识别算法性能进行了测试。

  虹膜识别中需要解决如下两个难点问题:一是虹膜图像的获取,二是实现高性能的虹膜识别算法。

生物特征识别产品的发展趋势

  生物特征识别产品逐步从单一PC处理,转变为分布式计算。用独立的前端独立设备来完成生物特征的采集、预处理、特征提取和比对,而用中心PC或服务器完成与业务相关的处理。阐述这种方式较之传统方式的优点~ 由于前端采用嵌入式设备,因而自然提出了对数字信号处理器的要求。

生物特征识别技术对数字信号处理的挑战

  为了获得更好的性能,研究者们从算法上、应用厂商从应用上对生物特征识别技术进行改进。这些算法根据不同生物特征的特点,采用新的数学模型,有效解决了现有算法的不足,使得生物特征识别技术性能上了一个新台阶。新的数学模型,较之以往的模型更为复杂,计算量更大。为了能够有效的在数字信号处理器上实现这些算法,要求数字信号处理器有更强的处理能力。我们下面结合人脸识别具体说生物特征识别技术对数字信号处理的挑战。

传统数字信号处理中核心算法之一就是傅立叶变换,该变换在通信、图像传输、雷达、声纳中都有很大的作用。但是,在相当长的时间里,由于傅立叶变换的计算量太大,即使采用计算机也很难对问题进行实时处理,所以并没有得到真正的运用。直到傅立叶变换的快速算法即快速傅立叶变换发现后,傅立叶变换的运算量大大缩短,从而使傅立叶变换在实际中得到了广泛的应用,也使得在数字信号处理器上实现傅立叶变换成为了可能。

  尽管傅立叶变换对数学、物理产生了深远的影响,但对于大多数应用例如人脸识别而言是远远不够的。比如说人脸图像中,眼睛所含有的信息较其他部分对识别而言非常重要,需要找到一种方法,提取出眼睛这部分重要的信息,并尽量降低不重要的信息对识别的影响。这就需要对人脸图像进行局部分析。然而,傅立叶变换无法进行局部分析,使得傅里叶变换在人脸识别中的应用很有限。

  为了提高性能,研究者将数字信号处理领域中新的复杂的变换如Gabor变换、小波变换引入人脸识别中,采用这些变换进行局部分析,提取出对人脸识别有用的特征,从而大大提高了人脸识别的性能。然而,Gabor变换和小波变换的计算量较之傅立叶变换而言非常大,为了在嵌入式设备上实现人脸识别系统,需要高主频、高性能的数字信号处理器来实现,这就对数字信号处理器的设计提出了一个很大的挑战。

  从应用角度而言,为了良好的交互性,在实现人脸识别系统时,要求实时实现从视频采集到人脸识别全过程完成(或者至少在1~2秒钟内实现),否则,给人的感觉就不自然、不流畅。因而,从良好的交互性角度而言,在嵌入式设备上实现人脸识别系统需要高性能的数字处理器。

  ADI公司的Blackfin系列处理器是一类专为满足当今嵌入式音频、视频和通信应用的计算要求和功耗约束条件而设计的新型 16~32 位嵌入式处理器。Blackfin 处理器基于由 ADI 和 Intel 公司联合开发的微信号架构(MSA),它将一个 32 位 RISC 型指令集和双 16 位乘法累加(MAC)信号处理功能与通用型微控制器所具有的易用性组合在了一起。 这种处理特征的组合使得 Blackfin 处理器能够在信号处理和控制处理应用中均发挥上佳的作用-在许多场合中免除了增设单独的异类处理器的需要。该能力极大地简化了 硬件和软件设计实现任务。

目前,Blackfin 处理器在单内核产品中可提供高达 756MHz 的性能。Blackfin 处理器系列中的新型对称多处理器成员在相同的频率条件下实现了性能的

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top