微波EDA网,见证研发工程师的成长!
首页 > 微波射频 > 测试测量 > 特征阻抗,VSWR和反射系数这点事

特征阻抗,VSWR和反射系数这点事

时间:08-10 来源:虹科电子测试测量 点击:

在学习射频和微波的基本原理过程中,也许没有比理解特性阻抗的概念更为重要了。当我们在谈论50欧姆或75欧姆电缆时,其实我们是在说电缆的特征阻抗为50欧姆,75欧姆等等。也许您还记得,在关于特性阻抗常见的介绍里,总是成片的数学公式和各种参数,以及几句聊胜于无的文字介绍,实在令人沮丧。于是本文,我们尝试用一种更为直观的方式来做一下阐释。

首先我们要明确,在今天的RF /微波系统中使用50欧姆或者75欧姆是人为的选择。其实比如说像43欧姆或者其他数值的阻抗也是可以的,但考虑到实际同轴电缆的物理尺寸,这个范围被限制在20至200欧姆以内。对于传输线而言,尽可能低的损耗和高的功率容量自然是我们期待的,从下图我们可以看出,考虑到方便计算,损耗和功率容量等等因素之后,50欧姆确实是最完美的折中了(针对空气介质)。至于75欧姆,则常见于不需要大功率传输的情况,例如有线电视线缆。

 

图1

但有一点要提醒的是特性阻抗的概念其实很广,包括所有的同轴线,印制电路板传输线、微带、带状线、双引线和双绞线。如果您自己设计PCB的传输线的话,您可以选择自己需要的值,而不必非得是50或者75欧姆。甚至自由空间本身也具有阻抗特性,在自由空间和其他无界介质的情况下,该阻抗我们称为固有阻抗。

使用50欧姆同轴电缆的一个实验

如果有人拿着一根1000英尺长的电缆对你说"这是50欧姆阻抗的电缆,好好用吧",然后你决定拿着欧姆表来验证一下是否真的如此。你将欧姆表的两根引线分别连到电缆的内导体和外导体,而线缆的尾端保持着开路,你会惊讶地看到它读到接近无限阻抗!然后你再把尾端处的内外导体短接,然后从这一头的开口端再测,现在读数变成接近零欧姆了,怎么会这样!然后你赶紧安慰自己‘不要慌,其实它真的应该是50欧姆的……’

您的仪表没有告诉您电缆为50欧姆的原因是它无法读取瞬时电压/电流比(V = IR)。其实普通的欧姆表具有非常高的内阻,欧姆表中的任何电容将与内部电阻结合会形成非常大的时间常数。这种大的时间常数使得这种类型的仪器不可能快速响应,以便在连接欧姆表导线的那一刻"看到"在同轴线上引入的高速脉冲。

所以我们不能使用常规的欧姆表测试方法来进行测试,于是我们将采用图2的电路方案。该电路允许我们通过切换开关来产生电流脉冲。星号表示希望观察和测量当前的位置。

图2

我们将假设开关已经处于放电位置很长时间,确保同轴电缆上不存在电压。现在,如果我们将开关转到CHARGE(充电),会发生什么?此时开关将电池(+)连接到同轴电缆的中心内导体,它开始对该同轴电缆进行充电,类似于对电容器充电。然后,我们可以通过将中心导体短路到屏蔽线、关闭电池或切换开关到放电位置来放电。

这样,通过操作图2的简单开关,我们可以在同轴电缆上引入电流"脉冲"。如果您在开关首次连接到CHARGE(充电)时测量中心导线中的电流,您将看到将达到最大值Imax = Vbat / Zo的电流脉冲,其中Zo是同轴电缆的特性阻抗,Vbat是电池电压。有时,特性阻抗也称为同轴电缆的浪涌阻抗。

那究竟是同轴电缆的什么特性对浪涌电流形成如上式的约束关系,换句话说为什么同轴电缆不能‘立即’充电?为了回答这个问题,我们来对比一下一个理想电容器的充电方式和按照图1连接开关电路的同轴电缆。

理论上,如果把一个理想电容和一个同样理想的电源相连,在那一刻的瞬时电流将会无穷大,电容器将立即完成充电。当然这里的假设是理想电容器在电流路径中具有零电阻和零电感,并且物理长度被视为零,这样电流脉冲不会在空间中传播。而我们实际的同轴线缆有单位长度的电阻分量和电感分量,并具有物理长度,这些因素都导致浪涌电流产生迟滞。

无限长度同轴电缆的等效电路

从上述讨论中,我们可以构建一个理想的电路,如图3。理想情况下,这里我们认为同轴电缆是无损的,电阻和电容也是理想的,没有寄生的电感,电容和电阻分量。黑盒1中包含无限长度的同轴电缆,另一个黑盒中是一小段同轴电缆,电缆尾部的内部导体和外部屏蔽层之间连接有串联RC网络。串联电阻R等于同轴电缆特性阻抗Z欧姆,串联电容无限大。在我们使用欧姆表,电压表,示波器,时域反射计,网络分析仪等等仪器之后,可以看出测量结果没有差异,我们得出结论,两个黑箱含相同的物理电路或电缆长度。

图3

测量同轴电缆阻抗的其他方法

浪涌电流法并不是测量同轴电缆特性阻抗的通常方法,但它确实可行,并具有直观的吸引力。另一种方法则是测量其每单位长度的电感和电容; L除以

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top