矢量调制分析基础
字无线接收机相似技术的I-Q 接收机。不同的是,VSA 软件专为高精度参数测量和调制特性显示而设计。还有,VSA 是能够测量和分析数字通信发射机与接收机系统几乎所有方面的测量工具。

图7. 带有射频前端的VSA 测量系统的简化方框图。对于其它前端,VSA 软件将执行所给前端不支持的功能。
图7 显示了Agilent 89600B VSA 的简化系统方框图。你可能注意到系统方框中的许多部分与图6 所示的数字通信接收机的类似。通过几个阶段的超外差式混频将射频输入信号下变频为能被ADC 精确数字化的中频信号。有多种不同类型的前端都可完成这个过程。有的比如信号分析仪提供射频信号检测和中频数字化。其它的像示波器和逻辑分析仪则提供完全数字化的基带信号。VSA 所需的输入是经过数字化的时间采样数据。随后,对这个数字化信号进行矢量( 正交) 检测和数字过滤; 如果需要,将其最后一次下变频为I 和Q 基带信号格式(I-Q 时间数据) 并存储在RAM 中。接着就是使用DSP 算法解调这个信号; 恢复载波和符号时钟并应用建滤波和解码( 恢复原始比特)。几乎任何一种调制格式都可被这个DSP 软件解调。
VSA 的实现与无线接收机不同,VSA 处理采样的信号是基于样本块; 而无线接收机是实时串行串行数据。当为VSA 软件提供无线接收机参数时,它可以通过DSP 的处理过程合成这个接收机。它能够提供接收机的全部功能,甚至包括生成模拟波形。因为信号实际上是数字化的,它可被后期处理并在时域、频域或调制域的任何域中查看。
VSA 数字解调
VSA 中数字解调过程的核心是数字解调。图8 显示了Agilent 89600B 所使用的数字解调算法的简化方框图。数字解调算法提供通用解调,仅需输入信号很少的先验信息即可执行解调,并适用于非常广泛的调制格式。解调器提供载波锁定、符号时钟恢复和比特恢复( 对实际已编码的1 和0 进行解码),并生成I-Q 测量波形。解调器还能产生理想的I-Q 波形,这些波形由真实的已恢复比特( 称为I-Q 参考波形 ) 合成。I-Q 测量波形与参考波形的差可得到I-Q 误差波形。分析I-Q 误差波形可得出调制质量数据结果,该结果可以通过各种数据格式和显示输出进行查看。
解调过程从配置VSA 基于软件的解调器开始。解调算法必须根据特定的数字调制格式进行配置,以恰当地解调和分析信号。大多数分析选件提供一组标准预设值,例如GSM、W-CDMA、cdma2000 或802.11a/b/g,可自动配置解调器。在这些情况下,输入中心频率并选择一个标准预置,软件就可以解调信号。
灵活配制或用户定义的解调
Agilent 89600B VSA 软件通过一个通用的、用户可定义的解调器提供更多额外功能。它允许针对非标准格式或故障诊断定制解调器配置。图8 的解调方框图显示了内部解调过程( 矩形框内) 和用户可设的配置参数( 椭圆或圆角矩形框内)。椭圆框内的项目是用于定义测量所需的解调器的配置参数。圆角框内是用户可调节的输入参数。解调算法至少知道调制格式(QPSK、FSK 等)、符号速率、基带滤波器类型和滤波器 α/BT 等参数。这组参数通常通常足以满足解调器锁定信号以及很多格式的符号恢复的需要。其它格式,像定制的OFDM 针对具体格式类型则需要额外的信息。

图8. 数字方框图
数字解调基带滤波
前面提到,数字解调利用基带滤波来限制带宽和降低码间干扰。还有,就像通信接收机一样,数字解调基带滤波必须配置的与被测系统匹配,以精确地解调信号。这同样要求滤波器类型( 如Nyquist 或Gaussian) 与滤波器带宽系数(α 或BT) 匹配。
如图9 所示,I-Q 测量波形和I-Q 参考波形具备独自的信号处理路径和基带滤波。I-Q 测量波形必须使用与被测系统的接收机滤波相匹配的基带滤波。该滤波器称为测量滤波器或Meas Filter。I-Q 参考波形必须使用与被测系统的总体( 发射机和接收机) 信道滤波相匹配的基带滤波。该滤波器称为参考滤波器或Ref Filter。参考滤波器能够仿真总体信道滤波因为它用来合成可被"完美的"线性信道信道响应接收的理想的I-Q 信号。解调器必须利用总体系统信道滤波才能精确地合成参考I-Q 波形。
选择恰当的滤波
在数字通信系统中,基带滤波可能出现在发射机或接收机上; 或者分布在发射机和接收机之间,发射机中完成一半滤波,接收机中完成另外一半。这是个很重要的概念,会影响到解调器在处理I-Q 测量波形和I-Q 参考波形时所需的滤波器类型。VSA 软件的Meas Filter 代表系统接收机的基带滤波,而Ref Filter 代表整个系统的基带滤波( 接收机和发射机整体的信道滤波)。

图9. 可选的匹配滤波器用于代表发射机和接收机的滤波。
借助已
