微波EDA网,见证研发工程师的成长!
首页 > 微波射频 > 测试测量 > 矢量调制分析基础

矢量调制分析基础

时间:06-20 来源:mwrf 点击:

分量,Q 代表正交( 与相位相差90 °)分量。你还可以将同相载波的某具体幅度与正交载波的某具体幅度做矢量加法运算,来表示这个点。这就是I-Q 调制的原理。

将载波放入到I-Q 平面预先确定的某个位置上,然后发射已编码信息。每个位置或状态( 或某些系统中状态间的转换) 代表某一个可在接收机上被解码的比特码型。状态或符号在每个符号选择计时瞬间( 接收机转换信号时) 在I-Q 平面的映射称为星座图。参见图3。一个符号号代表一组数字数据比特; 它们是所代表的数字消息的代号。每个符号号包含的比特数即每符号号比特数(bpsym) 由调制格式决定。例如,二进制相移键控(BPSK) 使用1 bpsym,正交相移键控(QPSK) 使用2 bpsym,而8 相移键控(8PSK) 使用3bpsym。理论上,星座图的每个状态位置都应当显示为单个的点。但由于系统会受到了各种损伤和噪声的影响,会引起这些状态发生扩散( 每个状态周围有分散的点呈现)。图3 显示了16 QAM 格式(16 正交幅度度调制) 的星座图或状态图; 注意,此时有16 个可能的状态位置。该格式使用4 比特数据串,编码为单个幅度度/ 相位状态或符号号。为了产生这一调制格式,基于被传输的代码,I 和Q 载波都需采用4 个不同的幅度度电平。

图3. 星座图中的每个位置或状态代表一个具体的比特码型( 符号号) 和符号号时间

在数字调制中,信号在有限数量的符号或状态中移动。载波在星座图各点间移动的速率称为符号率。使用的星座状态越多,给定比特率所需的符号率就越低。符号率十分重要因为它代表了传输信号时所需的带宽。符号号

率越低,传输所需的带宽就越小。例如,前面提到过的16 QAM 格式使用每符号号4 比特的速率。如果无线传输速率为16 Mbps,则符号率= 16 (Mbps) 除以4 比特即4 MHz。此时提供的符号号率是比特率的四分之一和一个更高效的传输带宽(4 MHz 相对16 MHz)。

I-Q 调制

在数字通信中,I-Q 调制将已编码的数字I 和Q 基带信息放入载波中。参见图4。I-Q 调制生成信号的I 和Q 分量; 从根本上讲,它是直角坐标—极坐标转换的硬件或软件实现。

图4. I-Q 调制

I-Q 调制接受I 和Q 基带信号作为输入,并将它们与相同的本地振荡器(LO) 混合。注意,这个可能是数字( 软件) LO。下面,I 和Q 均会上变频到射频载波频率。I 幅度度信息调制载波生成同相分量。Q 幅度度信息调制90°( 直角) 相移的载波生成正交分量。这两种正交调制载波信号相加生成复合I-Q 调制载波信号。I-Q 调制的主要优势是可以容易地将独立的信号分量合并为单个复合信号,随后同样容易地再将这个复合信号分解为独立的分量部分。以90° 分离的信号彼此之间呈直角或正交关系。I 和Q 信号的正交关系意味着这两个信号是真正独立的,它们是同一信号的两个独立分量。虽然Q 输入的变化肯定会改变复合输出信号,但不会对I 分量造成任何影响。同样地,I 输入的变化也不会影响到Q 信号。

I/Q 解调

如图5 所示,I-Q 解调是图4 所示的I-Q 调制的镜像。I-Q 解调从复合I-Q调制输入信号中恢复原始的I 和Q 基带信号。

图5. I-Q 解调( 或正交检测)

解调过程的第一步是将接收机LO 锁相至发射机载频。为了正确地恢复I 和Q 基带分量必须要把接收机LO 锁相至发射机载波( 或混频器LO)。随后,I-Q调制载波与未相移的LO 和相移90° 的LO 混合,生成原始的I 和Q 基带信号或分量。在VSA 软件中,使用数学方法实现90° 相移。

从根本上讲,I-Q 解调过程就是极坐标—直角坐标的转换。通常如果没有极坐标—直角坐标转换,信息不能在极坐标格式上绘制并重解释为直角值。参见图2。这种转换与I-Q 解调器所执行的同相和正交混合过程完全一致。

为什么使用I 和Q ?

数字调制使用I 和Q 分量,因为它可提供简单有效、功能强大的调制方法来生成、发射与恢复数字数据。I-Q 域中的调制信号具有很多优势:

1. I-Q 的实现提供一种生成复信号( 相位和幅度均改变) 的方法幅度。I-Q 调制器不使用非线性,难实现的相位调制,而是简单的对载波幅度度及其正交量进行线性调制。具有宽调制带宽和良好线性的混频器很容易得到,基于基带和中频软件的LO 也是。为生成复调制信号,只需产生信号的基带I 和Q 分量。I-Q 调制的一个关键优势是调制算法可以生成从数字制式到射频脉冲甚至线性调频雷达等各种调制。

2. 信号的解调也同样简单明了。使用I-Q 解调至少理论上可以轻松地恢复基带信号。

3. 在I-Q 平面上观查信号经常能更好地洞察信号。串扰、数据偏移、压缩以及AM-PM 失真等用其它方法难以呈现的现象在I-Q 平面上可以轻松查看。

数字

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top