微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > MCU和DSP > 基于虹膜的人体特征识别方法研究

基于虹膜的人体特征识别方法研究

时间:11-07 来源:今日电子 作者:湖南工学院 俞斌 点击:

人体特征识别方法,也叫生物特征识别方法,是指利用人的独特的生理及行为特征进行鉴别的身份验证的技术手段。它的产生及发展源于人们在迈进数字时代的过程中对身份验证方法的准确性与便捷性不断提高的需求。传统的身份验证方法主要包括身份标志物(如钥匙、证件等)以及身份标志信息(如账号、密码等),或者以上二者的结合(如银行卡等)。人们在使用过程中发现,他们都存在着共同的缺点:易于遗失和伪造。而且传统的身份验证系统并不能有效的识别持有这些身份标志事物的人是否是真正的拥有者。因此,一旦被冒充,真正的拥有者将遭受极大的损失。因此,人体特征识别方法作为一个更加有效的解决方案逐渐得到广泛应用。

人体特征的鉴别方法有很多种。在所有生物特征中,指纹相对稳定但录取指纹不是非侵犯性的。脸像特征具有很多优点(如主动性、非侵犯性和用户友好等),但脸像随年龄而变化,而且容易被伪装。声音特征具有与脸像特征相似的优点,但它随年龄、健康状况和环境等因素而变化,而且说话人识别系统也容易被录音所欺骗,容易被伪造。虹膜特征识别解决了这些问题,还具有上述其他生物特征所不具备的一些优点,故近年来虹膜识别技术被认为是最有前途的生物识别技术之一。

虹膜识别技术的一般过程

虹膜识别技术的过程一般来说分为:虹膜图像获取、图像预处理、特征提取和特征匹配四个步骤。

虹膜图像获取是指使用特定的数字摄像器材对人的整个眼部进行拍摄,并将拍摄到的图像通过图像采集卡传输到计算机中存储。

图像预处理是指由于拍摄到的眼部图像包括了很多多余的信息,并且在清晰度等方面不能满足要求,需要对其进行包括图像平滑、边缘检测、图像分离等预处理操作。

特征提取是指通过一定的算法从分离出的虹膜图像中提取出独特的特征点,并对其进行编码。

最后,特征匹配是指根据特征编码与数据库中事先存储的虹膜图像特征编码进行比对、验证,从而达到识别的目的。

获取眼部图像

本文的虹膜图像摄取装置如图1所示,采用的是卓为(SOVIC)SP-313 摄像头。该摄像头采用的是最新CCD效果的CMOS感光芯片,图像分辨率为 35万像素(640×480 无软件插值),内置低照度的辅助光源,能最大限度减少对人眼的刺激,使用时配以人工暗室,使人的眼部图像更清晰、明亮。图2是本设计采用的摄像头获取到的人眼部图像。

图1 虹膜图像摄取装置

获取到图片数据后,只需要将其按照一定的图片格式写入文件,即可完成需要的眼部图像在计算机中的存储。本文程序中采用的是BMP格式的图像文件,因为BMP图像文件存储的图像数据没有经过压缩,方便以后对图像进行的预处理。

图2 人的眼部图像

眼部图像的预处理

BMP图像文件格式主要有1、4、8、16、24和32位等图像格式。32位BMP图像文件格式表示该图像有232种颜色,图像中的每个像素用32位表示,一般情况下该文件格式没有调色版,32位中的最高8位保留,其余8位表示红色,8位表示绿色,8位表示蓝色。8位BMP图像文件表示该图像有256种颜色。图像中的每个像素用8位表示,并用这8位作为索引在彩色表中查找该像素的颜色,8位BMP图像一般也叫做灰度图像。

在本文获取到的图像是32位的彩色BMP图像。32位的彩色图像存储的图像色彩数据较多,图像文件的尺寸也较大。但是从本文图像识别的要求来看,这些都是不必要的,因此有必要将其转换为8位的灰度图像。

转换公式如式(1)所示。

(1)

其中Gray (i, j)为转换后的黑白图像在(i, j)点处的灰度值,由于公式中绿色所占的比重最大,所以转换时可以自接使用G值作为转换后的灰度。转换后的灰度图像如图3所示。从图像上看与 32 位RGB 图像没有大的不同,但是图像文件的尺寸从1.17Mb缩小到了301Kb。

图3 人眼部图像的灰度图像

将获取到的眼部图像转换为灰度图像之后,还需要对灰度图像进行去噪声处理。本文采用的是空域法中的加权均值滤波,它是用一个有奇数点的滑动窗口在图像上滑动,将窗口中心点对应的图像像素点的灰度值用窗口内的各个点的灰度值的平均值代替,如果滑动窗口规定了在取均值过程中窗口各个像素点所占的权重,也就是各个像素点的系数。

提取虹膜图像

此过程需要读取眼部图像的数据,检测虹膜图像的内外边缘,提取内圆

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top