微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 行业新闻动态 > 有望取代石墨的硅基材料在锂电池行业的前景展望

有望取代石墨的硅基材料在锂电池行业的前景展望

时间:06-19 来源:硅酸盐学报 点击:

该材料是以商业化SiO微粒为原料,以间苯二酚–甲醛树脂为碳源,在Ar气氛下高温碳化处理得到碳包覆层,同时内核SiO经高温歧化反应生成Si和SiO2,HF刻蚀后得到硅与空腔的体积比为3:7的多孔硅。该结构中,空腔尺寸能够很好的容纳硅在脱嵌锂时的体积变化而不使碳壳层破裂,保证了材料结构的稳定性;同时,包覆于多孔硅外表面的碳壳层能阻止电解液浸入多孔硅内部,减少硅与电解液的接触面积,仅在微米硅外表面碳包覆层上形成稳定的SEI膜。

相应地,对于内部硅纳米颗粒也包覆碳层的材料(iC-pSiMP),电解液与活性物质接触面积更大,同时硅体积膨胀易导致碳层破裂,内部硅纳米颗粒裸露并与电解液接触,导致充放电循环过程中产生更厚的SEI膜。

因而,nC-pSiMPs电极(活性物质负载量为0.5mg/cm2)较iC-pSiMP和pSiMP具有更优异的循环稳定性,在1/4C(1C=4.2A/g活性物质)循环1000次时可逆容量高达1500mA˙h/g。

此外,该电极材料经100次循环后,厚度从16.2μm增至17.3μm,膨胀率仅为7%,其体积比容量(1003mA˙h/cm3)也远高于商业化石墨(600mA˙h/cm3)。

1.2嵌入型

嵌入型硅碳复合材料是指将硅颗粒通过物理或者化学手段分散到碳载体中,硅颗粒与碳基体结合紧密,形成稳定均匀的两相或多相体系,依靠碳载体为电子和离子提供传输通道和支撑骨架,提供材料结构的稳定性。

嵌入型硅碳复合材料中,硅含量一般较低,可以贡献的容量较少,因此其可逆比容量也通常较低,但是在复合材料中存在大量的碳材料,所以其循环稳定性一般较好。

1.2.1石墨

石墨是目前应用最广泛的锂离子电池负极材料,分为天然石墨和人造石墨两种,原料来源广泛且价格低廉。石墨具有层片状结构,充放电过程中体积变化小,循环稳定性能良好,可缓冲充放电过程中的硅结构重建引发的体积膨胀,避免负极材料结构坍塌,适合作为缓冲基体;同时石墨良好的电子导电性很好地解决硅电子导电性差的问题。但石墨常温条件下化学性质稳定,很难与硅产生强的作用力,因而目前主要是通过高能球磨和化学气相沉积2种方法制备硅/石墨复合材料。

Pengjian等采用高能球磨法将石墨和硅粉混合制得硅/石墨复合材料。研究表明,该复合材料中没有产生合金相,其首次可逆比容量为595mA˙h/g,Coulomb效率为66%;循环40次后比容量为469mA˙h/g,每次循环的容量损失率约为0.6%。

Holzapfel等采用化学沉积法(CVD)将硅纳米颗粒沉积在石墨中,当硅质量分数为7.1%时,电极的可逆容量为520mA˙h/g,其中硅贡献的比容量超过2500mA˙h/g,循环100次后硅贡献的比容量仍高达1900mA˙h/g。

石墨与硅之间的作用力较弱,很难形成稳定的复合结构。因此,石墨一般被用作导电骨架或介质,与其他硅/碳材料共同构建结构稳定的三元复合体系。对于锂离子电池负极材料来说,硅/无定形碳/石墨(Si–C–G)是现今较为流行也是最早开始研究的三元复合体系,其制备方法主要有机械混合-高温热解法、溶剂热-高温热解法和化学气相沉积法等。

对于Si–C–G复合材料而言,硅比容量最大(约3579mA˙h/g),为石墨及热解碳的10倍,是决定复合材料容量的关键活性物质,可通过调控硅在复合体系中的含量来设计容量;石墨作为支撑材料,可改善硅的分散效果及导电性;无定形碳作为粘结剂和包覆碳,将硅粉与石墨有效一结合起来,并与石墨共同形成导电炭网结构,同时,无定形碳还能改善硅与电解液的界面性能。

因此,基于硅-无定形碳-石墨3种材料的有机结合,能有效提高硅负极的电化学性能。

Kim等采用机械化学球磨与造粒过程相结合的方法,将硅纳米颗粒与较大颗粒的鳞片石墨混合造粒,使得较小的硅纳米颗粒嵌入到鳞片石墨夹缝中,进而制备了硅–石墨/无定形碳复合材料。该复合材料很好的解决了硅导电性差和体积膨胀的问题,所得复合材料具有568mA˙h/g的可逆比容量,首次Coulomb效率可达86.4%。

Lee等将硅纳米颗粒(100nm)和天然鳞片石墨(~5μm)加入到沥青溶液中,经球磨-造粒-高温热解碳化得到Si–G–C三元复合材料,其可逆比容量为700mA˙h/g,首次效率高达86%,50次循环后比容量几乎没有衰减。

Ma等将硅纳米颗粒、聚氯乙烯(PVC)和膨胀石墨溶解于四氢呋喃(THF),蒸发溶剂后碳化,得到硅–碳–膨胀石墨复合材料。该材料在200mA/g下,可逆容量为902.8mA˙h/g,循环40次后容量保持率为98.4%。

研究发现,循环过程中因膨胀而破碎的硅纳米颗粒仍能较好的分散在膨胀石墨上,这主要归功于膨胀

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top