如何设计出高能效、高可靠性和高功率密度的同步降压稳压器
同步降压稳压器是一种常用的电源 ,随着各类应用要求的不断提高,行业越来越趋向于追求高能效、高可靠性、高功率密度的设计方案。比如 应用于无线局域网的负载点(PoL)电源,输入电压越来越宽,工作频率、功率密度也越来越高,随着技术的发展,甚至可将整个电源系统集成在单个封装中。同步降压稳压器其电路结构本身非常简单, 但工程师要完成高效可靠的同步降压稳压器的设计,还是有着不少的技术挑战,必须对稳压器电路的各种工作状态有着非常深入、透彻的了解,同时还需完成大量的计算工作。本文将介绍快速设计出高效可靠的同步降压稳压器的技术, 以及安森美半导体的 Power Supply WebDesigner在线设计工具,幇助工程师解决所面临的技术挑战。
动态性能的设计
设计一个可靠的同步降压稳压器,首先必须满足其动态性能指标如负载响应能力。而输出电感、电容的选择会直接影响到稳压器的动态性能,所以同步降压稳压器的功率电路设计通常是从选择输出电感和电容开始。
1、选择电感
从电路设计的角度,为实现快速瞬态响应, 必须选择尽可能小的输出滤波电感和最小的输出电容。然而小的电感值会增加电感电流纹波,导致电感中有效电流值增加而使得导通损耗增大,同时所导致的峰值电流的增加,也会大大增加控制管的开关损耗。
使用大电感,可减小电感中的电流纹波,从而降低稳态输出电压纹波,所导致的低峰值电流也有助于降低MOSFET的开关损耗,但电感太大不仅会导致相对较大的直流阻抗,产生较高的电感损耗,还会降低稳压器的负载响应能力,从而降低稳压器的动态性能。
为选择适当的电感,通常可假定电流纹波ΔILO为电感平均电流的30%,然后根据下面的公式直接计算出合适的电感值。
2、选择电容
最小输出电容的选择必须考虑到两个因素:一是稳态下输出电压纹波的要求,二是当负载从满载到空载突变时所允许的最大输出过冲电压。
但输出电容也不是越大越好,太大的输出电容及电容本身的寄生串联电阻会影响到稳压器的输出电路的性能以及当负载突变时稳压器的瞬态响应能力。
通常,输出电容应首选: 一,有较小等效串联电阻(ESR)的电容, 以便降低交流损耗和输出纹波; 二, 有较小等效串联电感(ESL)的电容, 以便在负载突变时抑制输出偏差。
能效设计
作为控制管和同步整流开关, 功率MOSFET广泛用于降压稳压器中。它们消耗大部分的损耗功率,通常决定了稳压器的整体能效。
1、选择最佳的MOSFET
针对不同的设计要求,比如是想要成本最低,还是想要损耗最低,又或是想要封装尽可能小等等,需要选择不同的MOSFET。
考虑到额定电流通常与MOSFET成本成正比,有的工程师会根据额定电流的大小来选择MOSFET,希望以此来控制产品成本;为最大限度地降低导通损耗,有的工程师则会选择具有最低RDS(ON)的MOSFET;还有的根据质量因数(FOM)= RDS(ON)xQg(TOT)来进行选择,希望能平衡导通损耗和开关损耗……这些依赖于参数的选择方法其实都有不足。使用额定电流及电压的方法没有考虑具体的开关损耗;而最低RDS(ON)法,成本可能会佷高,且MOSFET寄生电容可能导致更低的能效; FOM法则不能预测能效或成本。
因此,无论是为了降低成本,提高能效,还是为了设计更紧凑的产品,必须完整计算出电路损耗及工作温度,才能确保设计出的产品能工作在可靠的工作温度范围,达到最佳的能效。
2、计算MOSFET的损耗
在计算损耗前,需要先了解MOSFET在同步降压稳压器中的工作机制。图1所示为简化的稳压器的功率电路原理图,其中Q1为控制管,Q2 为同步管。
图1:简化的稳压器的功率电路原理图
同步降压稳压器主要有3种工作状态,其开关顺序是A-B-C-B-A,如图2所示。
图2:同步降压稳压器的开关顺序
状态A:控制管导通,输入电流经过控制管、电感传送到输出端。
状态B:控制管和同步管同时关断,电感储能通过同步管的寄生二极管放电,传送到输出端。
状态C:同步管导通,电感储能通过同步管放电,传送到输出端。
MOSFET的功耗包括控制管和同步管的导通损耗(PCOND)、控制管的开关损耗PSW、同步管的开关损耗、控制管和同步管的栅极驱动损耗PRgate。在140 kHz频率下导通损耗几乎占总功耗的70%。随着频率升高,总功耗中逐渐以开关损耗(PSW)为主。
1). 控制管Q1的损耗计算
Q1工作在硬开关条件下,在小占空比或高频(> MHz)时以开关损耗为主,开关性能受同步管Q2影响:快速di/dt可导致反向恢复损耗增加,快速dv/dt有可能引起Q2误导通, 造成Q1、Q2直通现象,导致额外的损耗。另外,值得注意的是,由Q2体二极管导致的反向恢复损耗、 Q2输出电容导致的输出电容损耗主要耗散于控制管Q1上 [Ref. 1,2]。因此,在计算Q1的开关损耗和温度时必须综合考虑到Q2的影响。另外,Q1的导通阻抗随结温上升而上升。结温越高,导通阻抗越高,导通损耗就越高, 使得结温进一步上升。因此,对Q1的导通损耗必须循环反复计算,直到管子的温度计算结果稳定下来。
- 中国IGBT市场销售额四年后将翻一倍(04-20)
- 争议能源之星照明灯具规范 LED灯泡使用寿命应持续多久(12-30)
- 安森美推出新的带集成电荷泵的D类音频放大器(08-30)
- 安森美推出0.18 μm CMOS制造工艺(09-12)
- Power Integrations的能效计算器将帮助设计师克服外部电源标准的困扰(04-12)
- 飞兆半导体在中国电子行业峰会上综述针对家电市场的最新高能效解决方案(06-23)