微波EDA网,见证研发工程师的成长!
首页 > 微波射频 > 微波射频行业新闻 > “墨子号”量子卫星实现星地量子密钥分发和地星量子隐形传态

“墨子号”量子卫星实现星地量子密钥分发和地星量子隐形传态

时间:08-10 来源:mwrf 点击:

圆满实现全部既定科学目标

"墨子号"量子科学实验卫星在国际上首次成功实现从卫星到地面的量子密钥分发和从地面到卫星的量子隐形传态,至此圆满实现预先设定的全部三大科学目标,为我国在未来继续引领世界量子通信技术发展和空间尺度量子物理基本问题检验前沿研究奠定了坚实的科学与技术基础。

中国科学技术大学潘建伟教授及其同事彭承志等组成的研究团队,联合中国科学院上海技术物理研究所王建宇研究组、微小卫星创新研究院、光电技术研究所、国家天文台、紫金山天文台、南京天文仪器有限公司、国家空间科学中心等,在中国科学院空间科学战略性先导科技专项的支持下,利用"墨子号"量子科学实验卫星,在国际上首次成功实现了从卫星到地面的量子密钥分发和从地面到卫星的量子隐形传态。两项成果于8月10日同时在线发表在国际权威学术期刊《自然》杂志上。这是继先前在国际上率先实现千公里级星地双向量子纠缠分发和量子力学非定域性检验的研究成果发表在《科学》杂志[Science 356, 1140 (2017)]之后,我国科学家利用"墨子号"量子卫星实现的空间量子物理研究另外两项重大突破。至此,"墨子号"量子卫星提前并圆满实现全部三大既定科学目标。

“墨子号”科学实验卫星最新成果新闻发布会现场

"墨子号"科学实验卫星最新成果新闻发布会现场

中国科学院院长、党组书记白春礼出席新闻发布会并作重要讲话

中国科学院院长、党组书记白春礼出席新闻发布会并作重要讲话

潘建伟院士在新闻发布会上介绍“墨子号”最新成果

潘建伟院士在新闻发布会上介绍"墨子号"最新成果

量子通信的研究内容之一是量子密钥分发。通信安全是国家信息安全和人类经济社会生活的基本需求。千百年来,人们对于通信安全的追求从未停止。然而,基于计算复杂性的传统加密技术,在原理上存在着被破译的可能性。随着数学和计算能力的不断提升,经典密码被破译的可能性与日俱增。与经典通信不同,量子密钥分发通过量子态的传输,在遥远两地的用户共享无条件安全的密钥,利用该密钥对信息进行一次一密的严格加密,这是目前人类唯一已知的不可窃听、不可破译的无条件安全的通信方式。量子通信的另一重要内容是量子隐形传态,它利用量子纠缠可以将物质的未知量子态精确传送到遥远地点,而不用传送物质本身。远距离量子隐形传态是实现分布式量子信息处理网络的基本单元。

量子通信通常采用单光子作为物理载体,最为直接的方式是通过光纤或者近地面自由空间信道传输。但是,这两种信道的损耗都随着距离的增加而指数增加。由于量子不可克隆原理,量子通信的信号不能像经典通信那样被放大,这使得之前量子通信的世界纪录为百公里量级。根据数据测算,通过1200公里的光纤,即使有每秒百亿发射率的单光子源和完美的探测器,也需要数百万年才能建立一个比特的密钥。因此,如何实现安全、长距离、可实用化的量子通信是该领域的最大挑战和国际学术界几十年来奋斗的共同目标。

利用外太空几乎真空因而光信号损耗非常小的特点,通过卫星的辅助可以极大扩展量子通信距离。同时,由于卫星具有方便覆盖整个地球的独特优势,是在全球尺度上实现超远距离实用化量子密码和量子隐形传态最有希望的途径。从本世纪初以来,该方向已成为了国际学术界激烈角逐的焦点。潘建伟团队为实现星地量子通信开展了一系列先驱性的实验研究。2003年,潘建伟团队提出了利用卫星实现星地间量子通信、构建覆盖全球量子保密通信网的方案,随后于2004年在国际上首次实现了水平距离13公里(大于大气层垂直厚度)的自由空间双向量子纠缠分发,验证了穿过大气层进行量子通信的可行性。2011年底,中科院战略性先导科技专项"量子科学实验卫星"正式立项。2012年,潘建伟领衔的中科院联合研究团队在青海湖实现了首个百公里的双向量子纠缠分发和量子隐形传态,充分验证了利用卫星实现量子通信的可行性。2013年,中科院联合研究团队在青海湖实现了模拟星地相对运动和星地链路大损耗的量子密钥分发实验,全方位验证了卫星到地面的量子密钥分发的可行性。随后,该团队经过艰苦攻关,克服种种困难,最终成功研制了"墨子号"量子科学实验卫星。"墨子号"卫星于2016年8月16日在酒泉卫星发射中心发射升空,经过四个月的在轨测试,2017年1月18日正式交付开展科学实验。

星地高速量子密钥分发是"墨子号"量子卫星的科学目标之一。量子密钥分发实验采用卫星发射量子信号,地面接收的方式,"墨子号"量子卫星过境时,与河北兴隆地面光学站建立光链路,通信距离从645公里到1200公里。在1200公里通信距离上,星地量子密钥的传输效率比同等距离地面光纤信道高20个数量级(万亿亿倍)。卫星上量子诱骗态光源平均每秒发送4000万个信号光子,一次过轨对接

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top