微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 行业新闻动态 > 功率半导体是电网的关键推动力

功率半导体是电网的关键推动力

时间:04-15 来源:北极星电力网 点击:

拥有极强的功率处理能力和良好的可靠性记录。在这一相对成熟的技术中,变流器损耗低,设备成本最小化。在未来新型电网的发展中,高压直流输电的作用不容小觑在电缆、变流器、变压器和功率半导体关键部件的生产领域中,ABB 以卓越的生产能力占据重要地位。

  特高压直流 (Ultra-HVDC)

  最近,随着技术的不断进步,特高压直流的额定电压已达 800 千伏。为达到这一功率级,引进了一种全新 130(平方厘米)的 6 英寸晶闸管,该组件可在不影响开关频率的前提下将正常电流提高至 4,000 A。这些技术创新意味着输电容量和效率将在未来二十几年内实现最大飞跃。该技术现已用于中国西南部向家坝水电站至上海的远距离输电项目,传输距离达 2,071公里,功率为 6,400 兆瓦,可为约3100 万人提供清洁电能 4。轻型高压直流 (HVDC Light)20 世纪 90 年代,ABB 在常规高压直流技术基础之上开发出轻型高压直流。该系统在变流过程中采用晶体管取代原先的晶闸管。此外,该系统还采用了低强度的地下及水下电缆或架空线保证远距离输电。高速门级控制半导体开关( 即绝缘栅双极晶体管,IGBT)的应用使最先进的电压源换流器 (VSC) 成为整个系统中不可或缺的组成部分,从而实现迅速注入或吸收无功功率的功能。这些半导体开关出色的终端稳压功能使之成为风力发电场的理想之选,可以应对风速变化带来的严重电压波动问题;此外,这些半导体开关还具有出色的可控制性和灵活性,在石油天然气钻塔和

  从向家坝至上海全长2,071 公里的特高压直流项目到这一功率级,引进了一种全新130(平方厘米)的 6 英寸晶闸管,该组件可在不影响开关频率的前提下将正常电流提高至 4,000 A。这些技术创新意味着输电容量和效率将在未来二十几年内实现最大飞跃。该技术现已用于中国西南部向家坝水电站至上海的远距离输电项目,传输距离达 2,071公里,功率为 6,400 兆瓦,可为约3100 万人提供清洁电能-(4)。
1 在绝缘外壳中,半导体器件采用电气隔离的方式与散热器隔开?c 模块中的电触点由焊接线提供。如发生设备故障,该电线将熔断,模块停止运行。在压接外壳中,负载电流从一侧进入?k 并从其对侧离开。向表面施加高机械压力可使触点保持低电阻和低热阻。如发生故障,硅半导体?l 和钼?i 将熔断,使电流能继续流动。

  实际上,所有商用功率半导体都为硅基半导体;随着硅材料技术的不断优化,其性能已非常接近物理极限。这意味着设计这一方面能够获得进一步发展的潜能非常有限;但是,半导体装置的外壳性能仍有相当大的发展潜力。

  目前,高功率半导体外壳主要分为两种形式。主要区别在于,在绝缘模块中,电路采用电气隔离,使用陶瓷绝缘体将其与散热器隔开,而在压接设计中,电流垂直通过整个模块,即通过散热器。这两种外壳都适用于绝缘栅双极晶体管 (IGBT) 和集成门极换流晶闸管 (IGCT)。但在实际应用中,集成门极换流晶闸管目前仅用于压接外壳,而绝缘栅双极晶体管则可用于这两种外壳。目前绝缘外壳在输出功率较低(大多低于 1 兆瓦)的系统中占据主导地位,原因在于其电路构建成本较低。与之相反,压接外壳主要用于输出功率超过 10 兆瓦的系统。这样选择的原因有很多,其中两个最重要的原因如下:

  – 在输出功率极高的系统中,必须对半导体进行并联和/或串联。对于后者来说,采用压接外壳可以对这些模块进行紧凑排列,仅通过散热器隔开,因此具有相当大的优势。这一点的实例参见高压直流输电设备,该设备中串联了 200 个模块。

  – 如应用中要求保证有不间断电流(例如电流源逆变器),则必须使用压接外壳。在压接外壳中, 如半导体发生故障, 金属极将熔断, 从而确保提供低阻抗的电流通路。相反,在绝缘外壳中,电流通过焊接线,发生故障时,焊接线会在高电流脉冲下熔断,从而断开电路。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top