微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 行业新闻动态 > 大功率、可扩展、封装占板面积很小、产生热量更少的 POL 稳压器已经出现

大功率、可扩展、封装占板面积很小、产生热量更少的 POL 稳压器已经出现

时间:07-17 来源:3721RD 点击:

通过 3D 封装架构和聪明的组件放置方式解决了热量问题
下面将要陈述的一些事实一定会让 DC/DC IC 及电路设计师不快,不过,真实情况是,这些问题今天比几年前更加显著。尽管这些设计师脑力强大,通晓设计艺术和设计学,拥有丰富经验,可以熟练摆弄波德图 (Bode plot)、麦克斯韦方程 (Maxwell’s equations) 和零极点,能够设计出精致的 DC/DC 转换器电路,但是 IC 设计师常常对付最后一个可怕的物理难题:热量。这本来是封装工程师的事儿。如今,封装工程师对 DC/DC POL (负载点) 稳压器热性能的影响要比以往大得多,尤其是那些大功率、小封装稳压器。

POL 稳压器之所以产生热量,是因为没有电压转换效率能够达到 100%。这样一来就产生了一个问题,由封装结构、布局和热阻导致的热量会有多大? 封装的热阻不仅提高 POL 稳压器的温度,还提高 PCB 及周围组件的温度,并使得系统散热设计更加复杂。

组件安装到 PCB 上以后,消除封装产生的热量主要有两种方法:
1)采用表面贴装方式时,将热量传导到铜质 PCB 层,从封装底部散热。

2)用冷气流从封装顶部散热,或者更准确地说,热量被传递到与封装顶部表面接触、温度更低、快速运动的空气分子中。

当然,还有一些无源和有源散热方法,为讨论简便起见,我们将这些方法统统归入上述第二个类别。因此,从热量管理的角度来看,要保持包括 DC/DC POL 稳压器在内的整个系统在安全的温度范围内运行,更多铜质 PCB 层、更大的 PCB 面积、更厚的 PCB 层、在 PCB 上分散摆放组件、更大和转速更快的风扇等都是好主意。好主意是好主意,不过对小型、大功率 POL 稳压器进行热量管理时,是否还有其他有助的方法?

尽管上述某些或所有方法对限制系统热量都很有效,但是采用这些散热方法也许会使系统或最终产品失去竞争优势。最终产品 (例如路由器) 可能由于故意在 PCB 上扩大组件之间的距离而变得太大,由于风扇数量增加和气流快速进出发热的电路而导致可听的噪声增大,这些因素最终也许会使最终产品成为市场上的劣等品,因为为了在竞争中胜出,各公司都不断在紧凑性、计算能力、数据传输速率、效率、冷却成本等方面做出改进。28nm、20nm 和低于 20nm 的数字器件提供更高性能,但功耗更大,而设备供应商则在凭借更快、更小、噪声更低、效率更高的创新相互比拼。新型数字技术能力超群、令人振奋,但背后仍然存在模拟和电源技术角力,以在封装更小的情况下提供更大功率,同时最大限度减小对系统总体温度的影响。具备较高功率密度的 POL 稳压器似乎是一个不错的选择:这种稳压器尺寸较小,但功率较大。

通过功率密度数值判断 POL 稳压器是否适合是 …… 对新手而言
每平方 (或立方) 厘米 40W 的 POL 稳压器应该好于每平方厘米 30W 的稳压器。销售商利用功率密度优势销售产品,系统设计师对稳压器功率密度的要求逐年提高,以凭借下一版更快、更小、噪声更低、效率更高的产品与对手竞争。在选择"更好的"POL 稳压器时,更高的功率密度数值是决定性因素吗? 我们从如下几个方面来考虑这个问题。

首先,把功率密度数值放在一边,研究一下 POL 稳压器的数据表。找到热量降额曲线。描述详尽的 POL 稳压器数据表应该有很多这类曲线,分别规定了不同输入电压、输出电压和气流速度时的输出电流、输出电压和气流速度。换句话说,这样的数据表应该显示在具体电路条件下 POL 稳压器的输出电流能力,这样设计师才能够根据稳压器的热量和负载电流能力判断其是否适用。稳压器是否满足系统的典型和最高环境温度及气流速度要求? 请记住,输出电流降额与器件的热性能有关。这两个因素密切相关,同等重要。

其次是效率,效率问题不在第一位,而是在第二位。单提效率会产生误导,仅用效率来表述一个 DC/DC 稳压器的热特性是不准确的。还需要计算输入电流和负载电流、输入功耗、功耗、结温 ... 等等。不过,为了更好地说明问题,应该在考虑输出电流降额以及其他与器件及其封装有关之热量数据的同时,研究效率数值。例如,一个效率为 98% 的 DC/DC 降压型转换器会给人留下极其深刻的印象。更加令人赞叹的是,这款转换器还声称具备出色的功率密度数值。你会不会买这个器件?

一位老道的工程师应该问问 2% 的效率损失有什么影响。这种效率损失是怎样转换成封装温度上升的? 这种高功率密度和高效率稳压器在 60°C 环境温度和 200LFM 气流时结温是多少? 要突破 25°C 室温时的典型数值来思考问题。在 -40°C、85°C 或 125°C 的极端温度时测得的最大值和最小值是多少? 如果封装热阻过高、结温上升到安全工作温度范围以外时怎么办? 如果这款昂贵的稳压器必须降额到很低的输出电流值,那么会不会因输出功率能力减弱而使该器件的高价格不再合理?

最后一个需要考虑的因素是这款 POL 稳压器是否易于冷却。数据表中提供的封装热阻值是仿真和计算该器件的结温、环境温度以及外壳温度上升的关键数据。由于表面贴装封装的大部分热量都是从封装底部扩散到 PCB,所以数据表中必须明确说明布局指导原则和各种热量测量条件及方法,以免在后续形成系统原型时出现意外。

设计良好的封装应该能够高效率地通过所有封装表面均匀散热,以消除热量集中问题和热点,这些问题会降低 POL 稳压器的可靠性,应该消除或减轻。如之前所述,PCB 负责吸收表面贴装 POL 稳压器的热量并提供散热途径,不过,在如今密集、复杂的系统中,气流是很常见,因此一种设计思路更加聪明的 POL 稳压器利用了这种"免费"冷却机会,用来去除 MOSFET 、电感器等发热组件产生的热量。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top