用于音频数据传输的常见IC间数字接口
先了解不同接口的优缺点而后选择元件,这有利于更加合理地选择元件,保证信号链的高效实现。
随着音频集成电路转向更精细的工艺尺度,要在相同一片高密度数字电路硅片上设计出高性能的模拟电路变得更为困难,集成的性价比减小。因此,音频系统架构师正在将音频信号链中的模拟部分进一步推至输出和输入端,而相互间以数码方式连接起来。
如图1所示,传统的音频信号链中有麦克风、前置放大器、模/数转换器(ADC)、数/模转换器(DAC)、输出放大器,以及扬声器,它们之间使用模拟信号连接。但是,由于模拟电路被推到了信号链的边缘,信号链中各集成电路间将出现更多数字接口。DSP通常是数字连接,换能器、放大器一般而言只有模拟接口,但现在也正在包含数字接口的功能。
目前,集成电路设计人员正在将换能器内的ADC、DAC和调制器集成到信号链的另一端,这样就不必在印刷电路板(PCB)上布放任何模拟音频信号,并且减少了信号链中的器件数量。图2给出了一个完整数字音频信号链的例子。
数字音频数据传输现在有许多标准。很多格式都可以用于在同一块PCB上实现IC间的通信,如I2S(IC间音频)、TDM(时分复用)和PDM(脉冲分时复用)等格式。其它音频格式则主要面向不同印刷电路板之间通过电缆的数据连接,如S/PDIF和以太AVB。
本文的重点是IC之间数字音频格式的区别与优缺点。如选择了数字接口不匹配的音频组件,则会不必要地使系统设计变得更加复杂。了解不同接口的优缺点后再选择部件,有助于提高组件选择效率和保证信号链的最高效实现。
IC之间音频(12S)是用于集成电路之间音频数据传输的最常见数字音频格式。飞利浦半导体(即现在的恩智浦半导体)于1986年推出了12S标准。1996年对该格式进行了修订。该接口首次广泛应用于CD播放器的设计,现在几乎在涉及集成电路间数字音频数据转换的任何应用上都可以看到该接口。多数音频ADC、DAC、DSP,与采样速率转换器,以及一些微控制器都带有I2S接口。
一个I2S总线会使用三根信号线做数据传输:帧时钟,位时钟,以及数据线。接收IC、发送IC,甚至一个单独的时钟主控IC都可以生成两个时钟,这取决于系统架构(图3)。带有I2S端口的集成电路通常可以设置为主模式或从模式。除非设计的信号链中使用了采样率转换器,否则系统通常会有单一的I2S主设备,以避免出现数据同步问题。
对于这些信号,飞利浦标准中将字选择命名为WS,时钟命名为SCK,数据命名为SD,然而电路制造商似乎很少在自己的IC数据表中使用这些名称。字选择另称为LRCLK,表示"左/右时钟",而SCK则另称为BCLK,指位时钟,或叫SCLK,即串行时钟。
IC串行数据管脚的名称因不同的电路供应商而不同,甚至同一个供应商各产品间的命名也不同。据音频IC数据表的一份快速调查显示,SD信号也可以称为SDATA、SDIN、SDOUT、DACDAT、ADCDAT,或这些名称的其他变体,取决于数据管脚是输入还是输出。
I2S数据流能够以一个典型位时钟速率,携带一个或两个通道的数据,典型的位时钟率在512 kHz(对应8 kHz采样速率)与12.288 MHz(为192 kHz采样速率)之间。数据字的长度通常是16、24,或32位。对于小于32位的数据字长,帧长度一般还是64位,没有用到的位由发送IC驱动至低电平。
有些IC仅支持每个立体声音频帧最大32位或48位时钟的接口I2S,虽然很少见。如果使用这类IC,系统设计人员就必须确保其连接另一端的设备也支持这些位时钟率。
图2 IC设计人员正在换能器中的ADC、DAC和调制器集成到信号链的另一端,从而无需在PCB板上布放模拟音频信号,并减少了信号链上的器件数量。图中是一个完整数字音频信号链的例子。
尽管I2S是最常使用的格式,但也有其它相同三线结构的变体,如左对齐、右对齐和PCM模式。这些格式与I2S的区别在于帧中数据字的位置、时钟的极性,或每个帧中位时钟周期的数量。
TDM格式
有些IC支持使用一个公共时钟的多路I2S数据输入或输出,但这样的方法显然会增加数据传输所需要的管脚数量。当同一个数据线上传输两个以上通道的数据时,就要使用TDM格式。TDM数据流可以承载多达16通道的数据,并有一个类似于I2S的数据/时钟结构。
每个通道的数据都使用数据总线上的一个槽(Slot),其宽度相当于帧的1/N, 其中N是传输通道的数量。出于实用考虑,N通常四舍五入到最近的2次幂(2、4、8、或16),并且任何多余通道都被空闲。一个TDM帧时钟通常实现为一位宽的脉冲,这与I2S的50%占空比时钟相反。超过25 MHz的时钟速率通常不用于TDM数据,原因是较高的频率会
- 技术分析:USB3.0/USB3.1/ThunderBolt高速串行接口速度由什么决定?(07-17)
- 爱特梅尔推出SAM3S产品系列(01-07)
- 新日本无线发布3款音频IC为音响更添优美音质(高音质、低失真、低噪音)(03-13)
- 想不到,一个小小的音频IC的市场容量居然这么大(04-16)