Connective boundary of 2D FDTD PML
时间:03-25
整理:3721RD
点击:
Hi every 1 :
I'm working with FDTD recently. I want to work out the result like the pic
uplaoded . it's add in connective boundary with resultant field and scattered field.
How can I code it? I have already wrote some, but it's not correct . I guess it's
be correlated with adding the source . Is it different as usuall~?
someone tell me~
Added after 14 minutes:
THis is for 2 dimension code~(I wrote~~~~)
did i forgot something~?
I'm working with FDTD recently. I want to work out the result like the pic
uplaoded . it's add in connective boundary with resultant field and scattered field.
How can I code it? I have already wrote some, but it's not correct . I guess it's
be correlated with adding the source . Is it different as usuall~?
someone tell me~
Added after 14 minutes:
THis is for 2 dimension code~(I wrote~~~~)
Code:
%100x100 iblcb=11; % array index of connective boundary, left % ibrcb=ib-10; % right % jbfcb=11; % front % jbbcb=jb-10; % back % for n=1:7.0*tau source(n)=10*(-(2/tau^2)*n+6/tau)*exp(-((n-delay)^2/tau^2)); %gauss% end ez(12,50)=source(n); % connective boundary with Hx & Hy hx(iblcb:ibrcb,jbfcb)=hx(iblcb:ibrcb,jbfcb)... -dt/muz*((ez(iblcb:ibrcb,jbfcb)-ez(iblcb:ibrcb,jbfcb-1))/dx)+dt/muz/dx*ez(iblcb:ibrcb,jbfcb); % front CB % hx(iblcb:ibrcb,jbbcb+1)=hx(iblcb:ibrcb,jbbcb+1)... -dt/muz*((ez(iblcb:ibrcb,jbbcb+1)-ez(iblcb:ibrcb,jbbcb))/dx)-dt/muz/dx*ez(iblcb:ibrcb,jbbcb); % back CB % hy(iblcb,jbfcb:jbbcb)=hy(iblcb,jbfcb:jbbcb)... +dt/muz*((ez(iblcb,jbfcb:jbbcb)-ez(iblcb-1,jbfcb:jbbcb))/dx)-dt/muz/dx*ez(iblcb,jbfcb:jbbcb); % left CB % hy(ibrcb+1,jbfcb:jbbcb)=hy(ibrcb+1,jbfcb:jbbcb)... +dt/muz*((ez(ibrcb+1,jbfcb:jbbcb)-ez(ibrcb,jbfcb:jbbcb))/dx)+dt/muz/dx*ez(ibrcb,jbfcb:jbbcb); % right CB % % connective boundary with Ez ez(iblcb,jbfcb:jbbcb)=ez(iblcb,jbfcb:jbbcb)+dt/epsz*((hy(iblcb+1,jbfcb:jbbcb)-hy(iblcb,jbfcb:jbbcb))/dx... -(hx(iblcb,jbfcb+1:jbbcb+1)-hx(iblcb,jbfcb:jbbcb))/dx)-(dt/epsz/dx)*hy(iblcb,jbfcb:jbbcb); % left CB % ez(ibrcb,jbfcb:jbbcb)=ez(ibrcb,jbfcb:jbbcb)+dt/epsz*((hy(ibrcb+1,jbfcb:jbbcb)-hy(ibrcb,jbfcb:jbbcb))/dx... -(hx(ibrcb,jbfcb+1:jbbcb+1)-hx(ibrcb,jbfcb:jbbcb))/dx)+(dt/epsz/dx)*hy(ibrcb+1,jbfcb:jbbcb); % right CB % ez(iblcb:ibrcb,jbfcb)=ez(iblcb:ibrcb,jbfcb)+dt/epsz*((hy(iblcb+1:ibrcb+1,jbfcb)-hy(iblcb:ibrcb,jbfcb))/dx... -(hx(iblcb:ibrcb,jbfcb+1)-hx(iblcb:ibrcb,jbfcb))/dx)+(dt/epsz/dx)*hx(iblcb:ibrcb,jbfcb); % front CB % ez(iblcb:ibrcb,jbbcb)=ez(iblcb:ibrcb,jbbcb)+dt/epsz*((hy(iblcb+1:ibrcb+1,jbbcb)-hy(iblcb:ibrcb,jbbcb))/dx... -(hx(iblcb:ibrcb,jbbcb+1)-hx(iblcb:ibrcb,jbbcb))/dx)-(dt/epsz/dx)*hx(iblcb:ibrcb,jbbcb+1); % back CB % % 4 corners ez(iblcb,jbfcb)=ez(iblcb,jbfcb)+dt/epsz*((hy(iblcb+1,jbfcb)-hy(iblcb,jbfcb))/dx... -(hx(iblcb,jbfcb+1)-hx(iblcb,jbfcb))/dx)-(dt/epsz/dx)*hy(iblcb,jbfcb)+(dt/epsz/dx)*hx(iblcb,jbfcb); ez(iblcb,jbbcb)=ez(iblcb,jbbcb)+dt/epsz*((hy(iblcb+1,jbbcb)-hy(iblcb,jbbcb))/dx... -(hx(iblcb,jbbcb+1)-hx(iblcb,jbbcb))/dx)-(dt/epsz/dx)*hy(iblcb,jbbcb)-(dt/epsz/dx)*hx(iblcb,jbbcb+1); ez(ibrcb,jbbcb)=ez(ibrcb,jbbcb)+dt/epsz*((hy(ibrcb+1,jbbcb)-hy(ibrcb,jbbcb))/dx... -(hx(ibrcb,jbbcb+1)-hx(ibrcb,jbbcb))/dx)+(dt/epsz/dx)*hy(ibrcb+1,jbbcb)-(dt/epsz/dx)*hx(ibrcb,jbbcb+1); ez(ibrcb,jbfcb)=ez(ibrcb,jbfcb)+dt/epsz*((hy(ibrcb+1,jbfcb)-hy(ibrcb,jbfcb))/dx... -(hx(ibrcb,jbfcb+1)-hx(ibrcb,jbfcb))/dx)+(dt/epsz/dx)*hy(ibrcb+1,jbfcb)+(dt/epsz/dx)*hx(ibrcb,jbfcb);
You can see the FDTD2D code of Taflove A. Computational electrodynamics. Finite Difference Time Domain Method (Artech House, 1995).
ByE