微波EDA网,见证研发工程师的成长!
首页 > 硬件设计 > 模拟电路设计 > 硬开关与软开关功率因数校正电路的研究

硬开关与软开关功率因数校正电路的研究

时间:08-01 来源:机电之家 点击:

3 UC3855构成的软开关有源功率因数校正电路

3.1UC3855工作原理

UC3855是一种能实现零电压转换的高功率因数校正器集成控制芯片,采用零电压转换电路、平均电流模式产生稳定的、低畸变的交流输入电流,无需斜坡补偿,最高工作频率可达500kHz,其内部有ZVS检测、一个主输出驱动和一个ZVT输出驱动。由于采用软开关技术,可以极大地减小二极管反向恢复时和MOSFET开通时的损耗,从而具有低电磁辐射和高效率的特点。其结构如图4所示。

UC3855也主要由乘法、除法、平方电路构成,为电流环提供编程的电流信号(IMO=IAC(UAO-1.5)/KU2ms)。芯片内部有一个高性能、带宽为5MHz的电流放大器,并具有过压、过流和回差式欠压保护功能,输入线电压箝位功能,低电流起动功能。内部乘法器电流限制功能在低线电压时能抑制功率输出。和UC3854相比,UC3855增加的电路功能主要有:过电压保护;工作达500kHz的零电压转换(ZVT)控制电路;具有电流合成器,只需检测主开关管开通时的电感电流,而主开关管关断时流经电感和二极管的电流可通过芯片内的电流合成器构造出来,因此可比UC3854少用一个电流互感器。这样既提高了信噪比,又减小了电流检测的损耗。

总体而言UC3855具有更高的的功率因数(接近1),更高的效率,和更低的电磁干扰(EMI)。

3.2ZVT-PFC电路原理

图5为ZVT-PFC电路原理图,S为主开关管,S1、Lr、Cr、VD1构成的谐振支路和主开关管并联。辅助开关S1先于主开关S导通,使谐振网络工作,电容电压(即主开关电压)谐振下降到零,创造了主开关零电压导通的条件。在辅助开关管导通时,二极管电流线性下降到零,二极管VD实现零电流截止(软关断)。ZVT-PFC的主要优点是:主开关管零电压导通并且保持恒频运行;二极管VD零电流截止;电流、电压应力小;工作范围宽;ZVT-PFC的不足之处是:辅助开关S1在硬开关条件下工作,但和主开关相比流经的电流很小,所以其损耗可忽略不计。


图4UC3855的电路结构图


图5ZVT-PFC电路原理图


图6电流合成器的波形

图6是电流合成器的波形,上部的波形是电流合成器合成的电感电流的波形,下部的波形是电感电流的实际波形。从图6我们可以看出这两种波形吻合得很好。测量结果还得出重构波形和实际波形在线电压较高时误差较大,并且在电流合成电路中微小的偏差就可导致误差。

表1、表2所示为UC3855的畸变因数、功率因数和交流线电压的关系

表1畸变因数、功率因数和交流线电压的关系表(一阶误差放大箝位电路)

交流线电压(V) 畸变因数(%) 功率因数
100 6.3 0.998
120 4.5 0.999
200 8.9 0.996
230 10 0.995
表2畸变因数、功率因数和交流线电压的关系表(二阶误差放大箝位电路)
交流线电压(V) 畸变因数(%) 功率因数
交流线电压(V) 畸变因数(%) 功率因数
100 4.95 0.999
120 5.30 0.999
200 5.45 0.998
230 5.83 0.998

4对比结论

图7是通过测量ZVT-PFC电路和硬开关的PFC电路(取消零转换部分)所得效率数据图。硬开关的PFC电路还需要一个风扇来保持功率器件的正常工作温度。从以上数据图可以看出具有ZVT的PFC电路(对应芯片UC3855)效率明显优于硬开关的PFC电路(对应芯片UC3854)。从图上还可看出特别在低输入电压时具有ZVT的PFC电路明显优于硬开关的PFC电路,因为低输入电压时具有高输入电流,从而在硬开关电路中引入高输入损耗。


图7效率数据图
 

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top