微光CMOS图像传感器读出电路设计
噪声可以通过改变掺杂浓度减小暗电流,但这会降低量子效率。在本电路中,In=100 fA,Is=20 pA,Tint=20μs,C int =2 fF,则Vdarkn=0.28 mV,Vsn=4 mV。
3.2读出电路噪声
闪烁噪声也称为1/f噪声。在半导体材料中,晶体缺陷和杂质的存在会产生陷阱,陷阱随机捕获或释放载流子形成闪烁噪声。在读出电路中,CTIA放大器是闪烁噪声的主要来源。
CTIA读出噪声与输入端电容Cin=Cpd、反馈电容Cfb,以及负载电容CL的设计均有关,其小信号噪声模型如图4所示。
图4 CTIA放大器噪声模型
噪声电压为
在本电路中,Cfb=2 fF,Cpd=1.3 pF,CL=1 pf,α=1.5,T=300 K,则Vn=2 mV。
3.3固定模式噪声(FPN)
之所以称为固定模式噪声,是因为这种噪声产生的影响不随时间的变化而变化,即表现在每帧图像上的误差是一致的。像素的固定模式噪声可以通过读出电路中的相关双采样电路进行消除。通过以上分析,在本电路中,噪声的主要来源在于光探测器的散粒噪声和CTIA放大器的闪烁噪声,输出总噪声为
噪声电压为
其中:Av为输出跟随放大器增益0.7。
根据公式,理论计算噪声电压Vn=3.1 mV,实际电路的噪声水平会比理论值大2倍左右。
4仿真与测试结果
4.1电路版图和仿真结果
本文所设计的电路采用CSMC公司0.5μm CMOS工艺模型,对电路进行Spectre仿真、版图设计和流片。
表1是对探测器进行的参数设置,主要依据的是相应材料制作的探测器对应测试得到的等效电阻值和等效电容值以及探测器流过的光生电流来确定的,其中Vref是外加在放大器正相端的电压值。
表1仿真时单元电路参数取值
图5 CTIA输出波形
从图5可看出,当信号电流为20 pA时,电路输出差分电压为90 mV,根据噪声电压的估算值,最小信号的信噪比SNR=15。
4.2测试结果
采用CSMC公司的0.5μm标准CMOS工艺库对电路进行流片,表2为仿真结果和实际测试结果比较(Cf=20 fF,C1=150 fF,C2=18 fF信号输入20~300 pA,积分时间20μs)。
表2仿真结果和实际测试结果比较
从表2可以看出,实测结果略小于仿真结果,当光信号为20 pA时,测得电路噪声电压为8 mV,则SNR=10.8。
5结论
本文设计了一种高增益低噪声的探测器读出电路,采用CTIA与CDS电路相结合,通过对CTIA电路中积分电容的改进,使电路在宽范围内对微弱信号读出,并采用开关控制和CDS电路来降低噪声,使电路信噪比达到10,该电路对航空航天领域微光探测系统读出电路的设计具有重要意义。
- 3D集成电路将如何同时实现?(04-09)
- CCD时代将被CMOS终结?(05-17)
- 十个电荷泵的设计方案以及经典应用案例(07-04)
- CMOS图像传感器电路设计(02-18)
- LDO能否提高小型照相机的照片质量(10-30)
- CCD与CMOS图像传感器对比(10-29)