以太网的电气威胁和保护
外的CDE防范措施。

图4:不同长度的CAT5电缆随时间变化的电荷积聚情况。
另一个需要了解的因素是CDE波形,因为其不同于前面所论述的任何一种威胁,根据耦合机制的不同,它可以是差模的也可以是共模的。此外,初步研究表明,其具有大幅度变化的特点,但总体而言,CDE波形具有高能量且同时显示电压和电流驱动。这种波形在几百纳秒的时间内散布,带有快速的极性倒转。
下面的图5显示的是一个破坏性CDE波形的例子,它在25英尺双绞电缆被充电至1.5千伏之后出现在以太网PHY的发送器引脚上。随着事件期间600纳秒时间的推移,在差分波形上可以看到从正电压到负电压有64.8伏的变化。在这个试验中,该PHY的发射器被破坏,无法在网络上传输数据包。
从板级设计人员的角度来看,以太网系统的设计和布局应关注CDE,并将首要重点放在从IC器件上分流能量。系统设计考虑包括添加TVS二极管阵列和耦合变压器本身。变压器电路将有助于防止共模瞬变,但高能量瞬变应具有一个接地路径。

图5:在25英尺双绞电缆被充电至1.5千伏后, 在以太网PHY中显示多种CDE放电波形。
任何线路侧保护器件(在这个例子中为SP03)的GND引脚(2,3,6和7)不能连接至GND,以符合IEE802.3标准对于隔离的要求;因此,设计人员别无他法,只能将该器件作为一种"仅为差模"的保护器。(注:当然,这必须满足对驱动端保护元件的需求,以防止共模事件。)
保护PHY或者驱动端的器件的I/O引脚始终连接至差分线对,如图1所示。然而,不同于线路侧保护器,这种器件的GND引脚可以被连接至本地GND平面,且Littelfuse建议采用这种配置。如果GND引脚没有被连接,那么保护器件(在这个例子中为SP3050)将会成为一种仅为差模的保护器,且可能会使破坏性共模事件通过未钳制的PHY。此外,应该注意,即使GND引脚已连接,一旦电压差超过内部TVS击穿电压加上两个二极管的电压降,该器件将仍然会保护防止差模事件。
至于在大多TVS二极管阵列中常见的剩下的这个引脚,引脚5,Vcc,Littelfuse还建议将其连接至本地电源,如5伏、3.3V电源。(注意:应该确保保护器件的对峙电压(VRWM)远高于电源电压,以防止激活或打开内部TVS二极管。)
通过连接SP3050器件的Vcc引脚,由于电气瞬变将会经由的两条独立的放电路径(如图6中红色所示),设计人员将可获得更好的整体钳位。它可以简单地被认为是一个电阻分压器,瞬变通过控向二极管进入,并经由两条路径:一条由内部TVS至GND,另一条通过电源或一个外部旁路电容至GND。总而言之,将引脚5连接至电源会带来更好的钳位性能,为以太网PHY提供更好的整体保护。

图6:电流进入TVS二极管阵列和引脚以带来最佳化的钳位性能。
偏置这个Vcc引脚的另一个好处是其可以降低从I/O到GND的电容,这与使其保持浮动或不进行连接是完全不同的。应该参考用于保护以太网PHY的特定器件的数据手册,以为设计人员提供这个将部分依赖于Vcc偏置电平的电容。下面的图7是SP3050的图示,仅供参考。

图7:TVS二极管阵列电容与偏压。
结论
在使用TVS二极管阵列来进行以太网端口保护时,设计人员应始终对其试图防止的威胁保持警惕。在大多数情况下,这些威胁是差模事件和共模事件的组合,当保护器件正确连接时,这些事件都能得到有效钳制。
线路侧保护元件仅限于差模事件保护,但是驱动端或PHY侧保护器件应被连接至GND以及本地电源。这将能提供最好的钳位性能,并最大限度地提高以太网端口的可靠性。
以太网 电气威胁 ESD 感应浪涌 EFT CDE 相关文章:
- 以太网接入技术简介(01-09)
- 以太网技术的发展(01-24)
- 基于PC104总线的嵌入式以太网卡设计(01-31)
- 下一代SDH技术发展趋势及应用分析(中)(01-05)
- PLC(电力线通信)技术简介(01-08)
- 电信接入网设备的安全和过压防护测试(01-08)
