微波EDA网,见证研发工程师的成长!
首页 > 通信和网络 > 通信网络技术文库 > 分解4G智能手机天线设计的挑战

分解4G智能手机天线设计的挑战

时间:04-16 来源:3721RD 点击:

。匹配电路的主要功能是,在宽范围的工作条件下,实现天线终端阻抗与无线电系统其余部分阻抗(通常是50Ω)的匹配。典型的可调谐匹配实现,使用并联或串联可变电容作为阻抗匹配电路的一部分。调整电容容量可以改变目标电路的谐振频率。

根据所需的天线尺寸来压缩和调谐范围,一般需要较大范围的容量变化以实现频率迁移,因此通常要求多个调谐元件和/或宽范围的调谐值。图1给出使用可变元件的天线馈点匹配电路。

图1:采用可变阻抗匹配电路的固定式宽带天线

孔径调谐孔径调谐是通过改变辐射元件的谐振结构实现的。典型的实现方式是采用一个简单的开关来选择天线结构上的不同负载元件。开关负载元件会影响天线的电气长度,从而改变谐振频率。图2是采用固定阻抗匹配电路的可变状态、孔径调谐天线的交流电路模型。

图2:采用固定馈点匹配电路的可变状态天线

不论是采用馈点匹配还是孔径调谐方法,如果天线同时用于发射和接收,那么调谐器件就必须能够承受最大发射功率,而且要能保持良好的性能特征。

案例说明  

下面这个例子很好地说明了调谐方法在天线体积减小方面带来的好处。这里用3D电磁建模程序分析两种不同的天线配置:一种是宽带设计;另一种是可以在相同频率范围内调谐,但使用了4个调谐状态的窄带设计。  

图3a显示了一个50x6x14mm的7频段天线配置,以及从700MHz至960MHz的较低三波段频谱范围内的相关辐射效率。图3b显示了相似的但体积更小(50x6x7mm)的天线配置。从图中可以看出,使用4个状态的调谐电路,可以产生几乎与较大的宽带天线相同的效率,以及整体频率覆盖率。


图3:在700MHz至960MHz范围内,a)多频段天线 和 b)调谐天线的体积和辐射效率的比较(天线尺寸单位:mm)。

从图3示例可以清楚看到,通过将天线调谐到某一种状态,每个状态支持特定的一组频段,就可以实现天线物理体积的减半。在天线工作时,如要改变工作频段,只需改变状态即可。但这种改变所需的时间必须与无线电系统中其它功能的要求相一致。典型要求是10ms至20ms或更短时间。

互耦效应同时工作在相同频率的相邻天线间会产生互耦效应,这可以通过隔离技术加以减轻。最常用的技术是在物理上将天线彼此分开。随着间隔距离的增加,互耦效应将随之减弱。不过,对于手持设备来说,很难提供足够的间距来减弱互耦效应。在这种情况下,系统设计人员需要采用其它不同的天线解决方案来达到规范要求的性能指标。  

还有一种可行的解决方案,使用SkyCross公司提供的隔离模式天线技术(iMAT),从相同的天线结构产生两种不同的模式。iMAT天线结构放置在手机的一端;两个馈点分别运行不同的辐射模式。这两个馈点是相互隔离的,不会发生互耦导致的损耗,因此每种模式的效率都很高。另外,辐射图案是不同的,因此会产生一个较低的相关系数。图4描述了iMAT天线的实现原理,从图中可以看到,在相同天线结构上的两个馈点之间的隔离。


图4、iMAT天线实现原理

使用模型  

为了缓解各种使用模型的影响,有必要将状态调谐和模式隔离两种方法结合运用。模式隔离允许具有多个馈点的单天线结构执行多个MIMO天线的功能;而状态调谐则允许这种结构非常小,但仍然能够非常高效地在宽频率范围内工作。图5显示了以6个调谐状态覆盖多个频段的可变状态iMAT天线结构的平均测量效率。iMAT结构能在平衡或不平衡的增益配置下工作,并且与传统天线设计技术相比,能以更小的封装提供更高的性能。


图5:覆盖所有3G/ 4G应用,且具有两个MIMO天线端口的状态调谐式iMAT结构

对于复杂的智能手机和平板电脑设备,要实现高效天线系统,就必须克服巨大挑战。新兴的LTE和其它4G网络覆盖了700MHz至2700MHz的不同频段。这些新的频率将增加到传统3G频段中,以满足全球移动漫游和兼容性要求。  

先进的无线网络通过在用户设备中使用MIMO来提高数据吞吐量。此外,诸如在线游戏和视频流等数据密集型应用正在催生更大的显示器和种类广泛的使用模型。这也给系统设计人员带来更多难题,例如要在设备上找到足够空间来实现多频段多天线系统。幸运的是,状态调谐和iMAT等先进的天线设计技术可以帮助设计人员从容应对上述挑战,灵活实现外观时尚、功能丰富的移动设备,并提供真正的4G网络性能。


Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top