基于ZigBee和模糊控制的新型室内照明控制系统设计
处理后通过GPIO口传送到传感器上, 以实现对传感器的控制。
核心板与各种传感器相连构成传感器节点,与自然光控制板和人工照明控制板相连构成控制器节点,扩展串行通信接口后构成协调器节点与基站PC机实现通信,扩展供电接口与电源模块相连。节点硬件框架如图2所示。
图2 Z igBee网络节点硬件框架图
根据节点类型、节点需要的发射功率和能耗,电源模块分为市电、太阳能与电池3种。协调器节点发射功率大, 采用市电供电;控制器节点与控制板相连,以驱动相应电路进行自然光及人工照明控制,因此,控制器节点可以和控制板同样采用市电供电;室外传感器节点采用太阳能供电;其他节点采用电池供电 .
3 照明控制设计
照明控制设计需要避免眩光,尽可能利用自然光作为光源,以人工照明为补充,满足室内人员的照明需要。为了避免眩光,保护视力,需要确定百叶窗的最大旋转角度。为了满足室内人员对照明的需要,需要确定百叶窗的理想旋转角度。通过对两者进行比较,可以确定百叶窗旋转角度。当理想旋转角度<最大旋转角度,则把百叶窗旋转到理想角度,人工照明关闭,反之,如果理想旋转角度>最大旋转角度,则使百叶窗保持在最大旋转角度,不足的照明通过人工照明进行补充。其整体思路流程图如图3所示。
图3 照明控制流程图
3. 1 最大旋转角度子系统
最大旋转角度子系统的任务是得到避免眩光基础上百叶窗的最大旋转角度。该子系统选用模糊控制器实现, 输入为室外水平照度、窗户参数、太阳高度角和太阳方位角,输出为百叶窗的最大旋转角度。
3. 1. 1 输入量的获取
室外水平照度可由传感器获得,窗户参数由具体房间窗户相关信息确定,式(1)和式(2)分别用来计算太阳高度角和太阳方位角。
其中:α为太阳高度角; Az 为太阳方位角; φ为房间的地理纬度;δ为赤纬; ω为时角。以上单位均为度。
在计算太阳高度角和太阳方位角所需的三个值中,房间的地理纬度(φ)可由房间的具体位置确定,赤纬(δ)和时角(ω)则需另外计算得到。
赤纬(δ)表示太阳光线与地球赤道面的夹角,可通过式(3)计算得到。
其中: n为一年中某日的日期序数。
时角(ω)以当地真太阳时正午为0 °,下午为正,上午为负,每小时15°,如表1所示。
表1 时角
3.1.2 模糊控制规则。
对该系统而言,制定模糊控制规则的主要依据是避免眩光,即当太阳位置接近于水平其直射,光照影响人们的视力时应关闭百叶窗;当只有漫射光时, 对百叶窗的最大旋转角度没有要求。
3. 2 理想旋转角度子系统
百叶窗理想旋转角度子系统的任务是得到在自然光提供的室内水平照度满足用户需要时百叶窗的理想旋转角度。由大量实际测量的经验数据可以建立自然光在室外的垂直照度、自然光在室内提供的水平照度,以及百叶窗旋转角度的百叶窗旋转角度对应模型表。根据自然光在室外的垂直照度和用户自定义设置的室内理想水平照度值,通过查询照度- 百叶窗旋转角度对应模型表可以得到百叶窗的理想旋转角度。
在这里不直接应用室内实际水平照度值, 而是将其用来检验并修正模型表,这样做既可避免闭环控制的产生,又能够在传感器暂时出错的情况下保持较好的控制。
4 结 语
本文介绍了一种基于ZigBee无线传感器网络和模糊控制的新型室内照明控制系统。该系统综合考虑了室内的遮阳系统与照明系统之间的相互联系, 整个系统最大限度地利用了天然光,通过对百叶窗旋转角度的控制,引入自然光作为光源,并以人工照明为补充使室内照明满足用户的需要。该系统能够有效地降低照明系统能耗,为人们构建节能、舒适的居住环境提供了一个有效方案。
- 四种短距离无线监控解决方案的性能对比(09-16)
- 基于MCF5213及Zigbee无线(09-12)
- 面向低速率应用的全球标准ZigBee (上)(09-27)
- 面向低速率应用的全球标准ZigBee (下)(09-27)
- Wibree:一个可供选择的新无线联网技术(11-07)
- 基于ZigBee技术的家居智能无线网络系统(01-11)