微波EDA网,见证研发工程师的成长!
首页 > 通信和网络 > 通信网络技术文库 > 近距离传输脉冲信号设计

近距离传输脉冲信号设计

时间:06-13 来源:电子发烧友 点击:

对于脉冲信号传输一百米左右距离的情况,首先用传输线理论分析了信号的传输特性,计算了信号传输的延时、衰减和反射;然后采用RS-485 串行总线标准及在传输终端接匹配电阻的电路来传输脉冲信号,一方面提高了信号传输速率和传输距离,另一方面消除了信号因反射引起的畸变和失真,增强了信号的传输可靠性;最后通过实验证明了传输电路结构简单,信号传输可靠性高,具有很大的实用和推广价值。

前言:对脉冲信号传输几十米或者上百米距离的情况,根据高速电路设计理论引入了长线传输的概念,并对脉冲信号的传输特性进行了分析。为了保证脉冲信号传输的完整性采用了RS-485 串行总线标准及跨接匹配电阻的电路方案,经过实验证明这里提出的方案切实可行且性能优越。另外该方案结构简单,成本低廉,对于近距离脉冲信号和高频率数字信号的传输有很大参考和使用价值。

  1 传输线理论

  1.1 长线传输定义

  一般情况下脉冲信号的边沿谐波频率高于自身频率,其快速变化的上升/下降沿会导致信号在传输过程中出现非预期的结果。由高速电路设计理论定义可知,如果脉冲信号传输长度大于信号上升或下降沿时间对应有效长度的1/6时,就可认为信号的传输为长线传输。脉冲信号在长线传输中会出现明显传输延迟、衰减和振荡等影响信号完整性的问题,这就需要用传输线理论来分析。

  1.2 脉冲信号的传输特性

  传输线理论为分布参数电路理论,线上所有位置都由分布电阻R、分布电容C、分布电感L 和分布电导G 构成。

  这些分布参数就决定了脉冲信号长线传输的传输特性。

  信号传输线的特性阻抗由传输线上入射电压与入射电流之比来表示,一般表达式为:


  信号的传输延迟由传输线分布参数中的串联电感和并联电容来决定,单位长度传输线上的传输延迟d T 表示为:


  脉冲信号在传输线上的整体传输情况如图1 所示,其中S Z 为源端阻抗, 0 Z 为传输线阻抗, L Z 为负载阻抗。

图1 脉冲信号在传输线的特点

  图1 中( ) X H w 表示信号通过传输线的衰减函数; A(w)和1R (w)表示传输线源端的输入接收函数和反射函数;T(w)和2R (w)表示传输线终端的传输函数和反射函数,表达式分别如下:


  由以上表达式可知如果传输线特性阻抗与源端阻抗和终端负载不匹配时,传输信号会在阻抗不连续处产生反射,反射信号会在终端和源端往返多次,直至衰减为零。信号的叠加就引起了传输信号的失真和振铃。

  1.3 传输线分布参数的计算

  综上可知信号的传输特性主要由传输线分布参数来决定,只要确定了传输线的分部参数及源端和终端阻抗值,根据式(1-7)就能计算出信号的传输特性值。以双绞线为例,其特性参数的计算可按如以下公式计算:

  式中d 表示传输线导体的线径,s 表示两线的线间距, r e 表示有效相对介电常数。对其余类型传输线分布参数的计算可以参阅文献[5-6]计算得到。

  2 脉冲信号传输方案及实验测试

  当脉冲信号传输较远距离的时候,为保证信号的传输速率及传输可靠性,采用了RS-485 串行总线标准来驱动、接收信号。

  2.1 RS-485 总线标准

  RS-485 标准是基于单对平衡线的多点、双向通信链路,提供了高噪声抑制、高传输速率、长传输距离、宽共模范围和低成本的传输平台[7]。该方案采用符合RS- 485 标准的MAX485 芯片来搭建驱动、接收电路,将其中一块芯片固定为发送,另一芯片固定为接收,两芯片对应的发送和接收端口用等长的双绞线连接。

  2.2 脉冲信号的传输特性分析

  脉冲信号在双绞线上的传输特性由其传输线分布参数及驱动芯片输出阻抗和接收芯片输入阻抗来决定的。

  实际测得所用双绞线的线径d 为0.05 cm,s 为0.096 cm,r e 取介于线路绝缘体介电常数和空气介电常数(1.00)之间的常数2.5。由式(9-11)计算得双绞线的特性阻抗,每英寸的分布电感和分布电容为:

  又可知MAX485 芯片驱动输出电阻约为50 Ω,接收端输入电阻大于12 kΩ。由公式(1-7)可以计算出传输线单位传输延迟d T 、传输线衰减函数H 及传输线源端和终端函数值A 、T 、1 R 和2 R 分别为:

  取传输双绞线长度为65 m,脉冲信号幅度为+4 V。可以计算得到信号通过双绞线的延时为325.65 ns;信号到达接收端的幅度为4× AHT = 5.02 V ;产生的反射信号经衰减传输到达源端的幅值为22 4× AH R = 2.36 V。信号在源端还会继续反射,如此反复直至衰减为零。用示波器直接测MAX485驱动芯片输出与接收芯片输入口的波形如图2 所示。

图2 无端接时发送与接收芯片A 口的波形

  其中时间轴档位为每格2 us,信号幅度档位为每格2 V。

可以读出输入脉冲信号幅度

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top