数据仓库概述与在通信运维系统中的应用
经常会出问题,延迟1-3日才能给出数据,显然不行的。
2. 数据质量。数据仓库所提供的各种信息,肯定要准确的数据,但由于数据仓库流程通常分为多个步骤,包括数据清洗,装载,查询,展现等等,复杂的架构会更多层次,那么由于数据源有脏数据或者代码不严谨,都可以导致数据失真,客户看到错误的信息就可能导致分析出错误的决策,造成损失,而不是效益。
3. 扩展性。之所以有的大型数据仓库系统架构设计复杂,是因为考虑到了未来3-5年的扩展性,这样的话,未来不用太快花钱去重建数据仓库系统,就能很稳定运行。主要体现在数据建模的合理性,数据仓库方案中多出一些中间层,使海量数据流有足够的缓冲,不至于数据量大很多,就运行不起来了。
从上面的介绍中可以看出,数据仓库技术可以将企业多年积累的数据唤醒,不仅为企业管理好这些海量数据,而且挖掘数据潜在的价值,从而成为通信企业运营维护系统的亮点之一。正因为如此,
广义的说,基于数据仓库的决策支持系统由三个部件组成:数据仓库技术,联机分析处理技术和数据挖掘技术,其中数据仓库技术是系统的核心,在这个系列后面的文章里,将围绕数据仓库技术,介绍现代数据仓库的主要技术和数据处理的主要步骤,讨论在通信运营维护系统中如何使用这些技术为运营维护带来帮助。
四、通信运维系统中对数据仓库的使用
现代通信运维系统往往呈现高度集中和网络化的特点,拥有多个子系统去完成网络支撑,网络管理,综合营帐等多个方面的工作。几乎每个子系统,每时每刻都会产生大量的数据,对这些数据的储存,管理和维护是通信运营商必须面对和解决的。下面是几个具体的实际例子来。
1. 电信设备的实时状态。从最底层的接入网网站,到传输设备,再到核心网络的电信交换机,每个设备每时每刻都发生着变化。网络管理系统需要实时的监控这些设备的状态,进行相应的处理工作。数据仓库可以提供对监控数据的收集,管理和查询支持。
2. 用户通信话单。有别于通话处理(使用交易数据库),用户话单的存储,计量乃至后期的数据分析,都将对海量的记录数据进行处理。
3. 数据业务。随着第三代移动通信的发展和普及,数据业务在通信业务中所占的比重也越来越大,甚至有超过语音通信的趋势。对这一类型的业务数据,比如用户访问某地址的数据流量,需要进行随时随地的数据记录和数据分析。
以上这些实例,都是数据仓库技术大展拳脚的领域。而数据仓库技术的引入和发展,也为通信运营维护系统提供强有力的支撑和实现手段。
- 什么是空间数据仓库(06-06)
- 建立数据仓库:入门的八个诀窍(08-07)
- SQL Server数据库涉及到的数据仓库概念 (11-24)
- 根据新技术特点浅谈数据仓库和数据挖掘架构(05-19)
- 快速了解数据仓库及数据建模的常用新术语(06-05)
- 动态数据仓库设计与应用浅谈(05-27)