微波EDA网,见证研发工程师的成长!
首页 > 通信和网络 > 通信网络技术文库 > 宽带放大器稳定时间的测量

宽带放大器稳定时间的测量

时间:10-01 来源:Jim Williams,凌特技术公司 点击:

对平顶脉冲发生器的需求,

不过开关必须足够快速,并且没有驱动效应。

  要更详细的话,可将延迟脉冲发生器分离成为一个延迟部分和一个脉冲发生器,从而可以分别改变它们(图4)。示波器的输入端有一部分用于补偿稳定时间测量路径的传播延迟。同样,其它延迟也补偿了采样门的脉冲发生器传播延迟。这个延迟产生了一个脉冲的相位提前版,它触发待测放大器去驱动采样门的脉冲发生器。这种方案做到了采样门与脉冲发生器传播延迟的无关性,从而改进了最小可测安全时间。

  图4电路最突出的新东西是二极管桥开关以及乘法器IC。二极管桥与匹配的低电容肖特基二极管与高速驱动相结合,得到明确的开关动作。这个桥快速地切换进入放大器汇总点的电流,稳定时间在1 ns内。对地箝位的二极管可防止过高的桥驱动摆幅,保证没有不理想的输入脉冲特性。

  对采样门乘法器IC有严格的要求。它必须有准确的通带信号路径信息,而不会带入特殊的成分,尤其是对那些源于提供采样门脉冲的开关指令通道。FET或采样二极管桥可能是采样门开关的常见选择。但FET有寄生的栅极-通道间电容,会在信号路径中产生较大的栅极驱动馈通。在几乎所有FET中,这种馈通多数时候都大于观测的信号,会带来示波器过载,掩盖了开关的作用。二极管桥好一些;消除它的小寄生电容较简单,并且其对称的差分结构可获得低的馈通。但是,桥需要作DC和AC修整,还要复杂的驱动与支持电路(参考文献3、4、7和14)。

  为避免这些问题,采样门乘法器IC用作一个有低馈通的宽带高分辨率开关。这种方案最大的优点就是可以将开关控制通道保持在带内。转换速率保持在乘法器IC的250MHz通带内。乘法器宽的带宽意味着总能控制开关指令的转换,不存在带外的响应,这大大减少了馈通和寄生效应。

  稳定时间的电路

你可以通过一个反相器A的延迟网络与一个由类似反相器C构成的驱动级,用输入脉冲切换输入桥(图5)。延迟补偿了采样门控脉冲发生器的延迟响应。这一步确保了在放大器待测转换时间结束后,立即出现采样门的脉冲。延迟范围的选择使采样门脉冲可以出现在放大器转换前。这种性能在正常工作时是没有用的,虽然它可以保证你总能捕捉到稳定间隔。

  C反相器构成了一个非反相驱动级,用于二极管桥的切换。通过各种调整,可以优化驱动器的输出脉冲形态(见附文2"稳定时间电路的修正过程")。这种方案为二极管桥提供了一个干净而快速的脉冲。高保真的脉冲不会有无阻尼的成分。它能防止产生辐射和破坏性的地电流,避免降低测量噪声背景的等级。驱动器还激活B反相器,它为示波器提供一个时间相关的输入级。

  驱动器的输出脉冲通过1N5712二极管箝位的正向压降,以不到1ns的时间转换。这个转换使二极管桥产生了一个几乎瞬时的切换。干净的稳定电流进入放大器待测汇总点,产生了一个成比例的放大器输出动作。用一只拉至-5V的1kΩ电阻,为放大器的汇总点建立一个负偏流。该电流与输入电流级相结合,产生一个-2.5V?+2.5V的放大器输出转换。这个放大器输出再送至一个偏置在5V的分压器。调整电位器至一个标称500Ω值,使得当待测放大器转换到-2.5V时,由两只肖特基二极管箝位的结点电压转换为0V。缓冲放大器卸载这个箝位稳定结点,为AD835乘法器IC提供稳定时间信号。

  进入乘法器IC的其它信号路径使用一只20kΩ的电位器,设定输入脉冲的延迟时间。这个电位器馈送至三个比较器,用一只2kΩ电位器设定延迟脉冲宽度。这一步设定了采样门的导通时间。Q1级使采样门的脉冲成为一个干净而快速的上升时间。这种技术为采样门的乘法器IC提供了纯净、已校正幅度的on/off切换指令。适当的采样门脉冲延迟设置意味着示波器在稳定时间彻底结束前,不会看到任何输入,从而消除了示波器过驱问题。通过调整采样窗口的脉冲宽度,可以观测到所有剩余的稳定动作。这种方式下,示波器的输出是可靠的,可以获得有意义的数据。

  性能结果

电路的工作性能很好(图6)。轨迹A是时间校正后的输入脉冲,轨迹B是放大器的输出,而轨迹C是采样门的脉冲,轨迹D是稳定时间的输出。在说明波形的位置时,要注意轨迹B相对于时间校正后的轨迹A有时滞。这种时滞说明了轨迹B在轨迹A前的虚假动作。当采样门的脉冲升高时,采样门作整齐的切换。您可以方便地观测到放大器摆动的最后20 mV。另外还可以看到整个振铃时间,以及放大器很好地稳定到一个最终值。

  当采样门的脉冲变低时,采样门只需要2 mV的馈通就可关闭。任何时候都不会出现其它动作,永远不会使示波器过载。

可以通过调

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top