超宽带无线技术
一、引言
随着无线通信技术的发展,现有的无线网络技术已经不能满足人们对短距离高速无线通信的需求。因此,当设计未来的短距离无线通信系统时,需要考虑通信的普遍特性和B3G中提到的"任何人、任何时间、任何地点"的连接性。这就要求新的无线世界是现在和未来无线通信系统的综合,包括WANs、WLANs、WPANs和Ad Hoc以及家用局域网。它可以连接各种不同的设备,包括计算机和各种娱乐设备。要实现这个目标,就需要开发新的无线技术。
UWB技术最初是在1960年作为军用雷达技术开发的,早期主要用于雷达技术领域。1972年,UWB脉冲检测器申请到了美国专利;1978年,出现了最初的UWB通信系统;1984年,UWB系统成功地进行了10公里的试验;1990年,美国国防部高级计划局(DARPA)开始对UWB技术进行验证;2002年2月,FCC批准了UWB技术用于民用。
UWB技术发展缓慢的原因主要有:①在1994年以前主要限于军方使用,限制了第三方开发支持UWB的软件和硬件;②由于UWB使用许多专用频段,FCC对UWB技术的批准进展缓慢:③UWB带来的干扰问题也阻碍了UWB的发展步伐。另外,由于UWB技术可能取代现在使用的所有无线技术,包括PAN、WLAN(802.11a、802.11b、802.11g)和无线WAN,因此,许多公司会抵制该技术的商用。
二、UWB的优点
美国联邦通信委员会(FCC)在2002年2月14日的规定中,超宽带系统被定义为相对带宽(信号带宽与中心频率的比)大于20%或带宽大于500MHz的信号系统。与其他无线通信技术相比,UWB具有许多优点,表1列出了UWB技术与其他无线局域网技术的比较。UWB技术具有传输速率高、系统容量大、抗多径能力强、功耗低、成本低的特点。此外,它还可通过改变脉冲的幅度、间距、或持续时间来传递信息。
与窄带收发信机和蓝牙收发信机相比,UWB不需要产生正弦载波信号,可以直接发射冲激脉冲序列,因而具有很宽的频谱和很低的平均功率,有利于与其他系统共存,提高了频谱利用率。
表1 UWB与其他无线局域网技术的比较
| 数据速率(Mbit/S) | 功耗(mW) | 传输距离(m) | 频段 |
蓝牙 | 1-2 | 1OO | 100 | 2.4GHz |
IEEE 802.11b | 11 | 200 | 100 | 2.4GHz |
IEEE 802.11a | 54 | 40-800 | 20 | 5GHz |
IEEE 802.11g | 54 | 65 | 50 | 2.4GHz |
UWB | 100-500 | 1 | 10 | 3.1-10.6GHz UWB不需要正弦波调制和上、下变频,也不需要本地振荡器、功放和混频器等,因此体积小,系统结构简单。UWB对信号的处理只需使用很少的射频或微波器件,因而射频设计也比较简单,系统频率自适应能力强。由于只要能将脉冲发射机和接收机前端集成到一个芯片上,再加上时间基和控制器,就可以构成一部UWB通信设备,因此它的成本可以大大降低。 由于UWB信号采用了跳时扩频,其射频带宽可以达到1GHz以上,它的发射功率谱密度很低,信号隐蔽在环境噪声和其他信号之中,用传统的接收机无法接收和识别,必须采用与发端一致的扩频码脉冲序列才能进行解调,因此增加了系统的安全性。 UWB信号的衰落比较低,有很强的抗多径衰落的能力。 UWB信号的高带宽带来了极大的系统容量,由于UWB无线电信号发射的冲激脉冲占空比极低,系统有很高的增益和很强的多径分辨力,所以系统容量比其他的无线技术都高。 由于UWB信号的扩频处理增益比较大,即使采用低增益的全向天线,也可使用小于1mW的发射功率实现几公里的通信。如此低的发射功率延长了系统电源的使用时间,非常适合移动通信设备的应用。有研究表明,使用超宽带的手机待机时间可以达6个月,而且低辐射功率可以避免过量的电磁波辐射对人体的伤害。 |
- 基于混合TCP-UDP的HTTP协议实现方法(01-10)
- 基于EPA协议的IEEE802.11b无线测控系统(01-18)
- 无线技术领域从多元竞争走向多元融合 (01-01)
- 无线通信智能天线技术的未来发展趋势(02-22)
- 基于CC1020的无线通信模块设计(03-24)
- 近距离无线通信技术标准解析(03-25)