TD-SCDMA射频功率放大器研究
TD-SCDMA(时分同步码分多址接入)是第三代移动通信三大主流标准之一,是我国具有自主知识产权的通信标准,它标志着中国在移动通信领域已经进入世界先进行列,目前,TD-SCDMA的商用化进程正在顺利地进行之中[1]。TD-SCDMA系统采用的是QPSK/8PSK调制,在高速的数据传输应用中,更是采用了如16QAM这样的调制方式。这些调制方式都属于非恒包络调制。由于调制信号在幅度和相位上都存在误差,用单纯的相位误差和频率误差已不足以反映信号的调制精度,于是引入了误差矢量幅度(EVM)指标来衡量传输信号的质量。在现代移动通信系统中,EVM是衡量射频功率放大器性能的重要指标之一[2-3]。在频分双工模式的移动通信系统中,由于收发信的频率是不同的,因此射频功率放大器与接收机同时处于工作状态,影响射频功率放大器EVM性能的主要因素是功率放大器的非线性特性以及传输信号的峰均比等。而在TD-SCDMA移动通信系统中,由于采用时分双工模式,收发信机不能同时工作,即用于发射信号的射频功率放大器根据系统要求分时工作[4]。除上述因素会影响射频功率放大器的EVM指标,本文通过对基于 Freescale 生产的LDMOS 晶体管MW6IC2240构成的射频功率放大器研究,以及建立相应的电路模型,主要研究了射频功率放大器的瞬态响应上升时间对其EVM性能的影响,根据仿真和测试结果,得到在TDD模式下影响射频功率放大器EVM性能的电路参数,提出了改进的TD-SCDMA射频功率放大器电路系统设计,其EVM性能接近频分双工模式下的性能。
TD-SCDMA射频功率放大器
TD-SCDMA不同于WCDMA、CDMA2000等第三代移动通信体制,它采用了TDD模式,它的接收和发射是在同一个频率下分时进行的,这就需要用开关来保证通信系统收发信号的正常切换。因此,时分双工模式下的TD-SCDMA射频功率放大器也不同于WCDMA和CDMA2000系统中的射频功率放大器的工作状态,而是工作在时分双工模式下,即只在系统发射信号的时隙内工作,在其他时隙内必须关闭,以避免系统自激。这不仅保证了系统的有序运行,也提高了系统效率和频谱利用率。
射频功率放大器的工作状态是由其偏置来决定的。如果给功率放大器加一个固定的偏置电压,则其一直处于导通状态,这里定义为常开模式;而要使功率放大器工作在时分双工模式下,可以通过控制功率放大器栅极偏置电压来实现,该控制信号根据TD-SCDMA的物理信道信号特点来产生。
这里用Freescale的LDMOS功率放大晶体管MW6IC2240设计了一个输出功率为2W的三载波TD-SCDMA功率放大器。MW6IC2240的功能框图如图1所示,它包含了两级放大,其饱和输出功率大于40W。
图1中的VDS1和VDS2是功率放大器的漏极供电,这里加28V的固定电压;VGS1和VGS2则是功率放大器栅极供电端,分别给其加上固定电压和受系统控制的偏置电压就能使其分别工作于常开模式和时分双工模式。通过实际测试,其常开模式和时分双工模式下的EVM指标如图2所示。
从图2中可以看出,随着输出功率的增大,EVM指标不断恶化,这是由于随着输出功率接近功率放大器的1dB压缩点,非线性失真开始明显增大,非线性失真则会严重地影响EVM指标,这在其他许多文章中都有报道;这里主要研究功率放大器在时分双工模式下(即正常工作模式)的EVM值总是比常开状态下的EVM值大,即功率放大器在时分双工模式下工作对信号有所恶化,由图2可以看出,功率放大器处于时分双工模式下的EVM值比常开模式时高大约0.5%(此时时分双工方式下功率放大器的瞬态响应上升时间为1.5us)。下面主要分析产生这种差异的原因。
功率放大器的瞬态响应对EVM影响分析
功率放大器在时分双工模式下与TD-SCDMA信号帧特点密切相关。TD-SCDMA的一个子帧的长度为5ms,由7个常规时隙和3个特殊时隙组成,如图3所示。这里主要考虑常规时隙:在TDMA信道上一个时隙中的信息格式称为突发,TD- SCDMA系统采用的突发结构如图3所示,突发由两个长度分别为352chip的数据块、一个长度为144chip的中间码和一个长度为16chip的保护时隙(GP)组成[5]。
由图3可知,TD-SCDMA的常规时隙的最前面就是一个352chip的数据块,其中包括了许多TD-SCDMA信号的系统信息。而射频功率放大器对栅极输入的脉冲偏置方波电压总有一个瞬态响应,特别是上升时间的影响。于是产生了对TD-SCDMA信号削波的现象,会造成部分数据符号丢失,因此造成对 TD-SCDMA传输信号EVM指标的恶化。如图2中的时分双工模式下EVM指标就是在偏置电压上升时间为1.5us情况下的测试数据。
功率放大器的瞬态响应不仅与器件本身有关,还与偏置电路的设计密切相关。为了更好地分析功率放大器的瞬态响应,这里根据晶体管的模型用二阶R-C网络来等效分析功率放大器的瞬态响应,如图4所示。其中,C1、R1、R2代表功率晶体管的等效参数;而C2、R3、R4则是功率放大器的供电电路参数。当功率放大器打开时,控制开关J1的3脚与1脚相连,电源|稳压器V1对电容进行充电,可见电路的上升时间不仅与功率晶体管的电容C1有关,还与供电电路的滤波电容C2和电阻R4有关。在实际的应用中,R4一般选取10?赘,而由于上升时间不能太大,滤波电容只能选择pF量级的。但功率放大器关断时,开关J1的3脚与2脚相连,此时电路通过阻值很小的电阻R3来放电,从而保证功率放大器的瞬态响应下降时间足够短。
EVM TD-SCDMA 误差矢量幅度 射频性能 相关文章:
- 德州仪器推出高性能双/四通道 ADC 产品系列(03-23)
- 浅析TD-SCDMA误差矢量幅度(EVM)测量(06-26)
- WiMax可能和TD-SCDMA一起上 英特尔图谋中国3G(08-23)
- TD-SCDMA测试用户过两万 中国标准着眼4G(08-23)
- 全球WiMAX论坛主席Ronald Resnick演讲(08-23)
- 3G市场规模预测:运营格局决定市场规模(08-30)