移动设备的FM测试
现在,FM逐渐成为一项标配功能。与WiFi、GPS和3G蜂窝不同的是,早在20世纪30年代初Edwin Armstrong首先建议将FM用于语音和音乐广播时,宽带FM就已经开始使用了。
在今天的手持设备中,FM主要用于收听FM广播。但是,如果采用FM传输,这些设备还能将存储的数字音乐用广播的方式发送到附近的FM接收机,例如汽车娱乐系统。当然,现在FM很可能成为高端移动设备的功能之一。如何把宽带FM信号测试做得足够彻底、快捷,成本足够低廉以使设备成本增加得最少并且保持较高的设备质量和用户满意度,是移动设备制造商必须面对的问题。
缺乏测试标准
虽然业内缺乏宽带FM信号指标的官方标准,但也存在一些共同点。例如,所有国家通常使用VHF无线电频谱(通常为87.5~108.0MHz),但有的国家也使用另外的VHF频带。电台带宽通常为100kHz,"中心"频率要么以100kHz的连续奇数倍(北美、南美、加勒比)或偶数倍(欧洲某些地区,亚洲和格陵兰岛)增加。对于单个频道则基本一致(见图1)。单声道广播(右声道和左声道合并)约占15kHz,立体声广播的导频信号固定位于19kHz,立体声声道(左声道和右声道)范围从23kHz到53kHz。RDS,即数字广播数据业务(57kHz),可用于传输窄带数据信号,剩余的频带用于直接频带和其它副载波业务。
图1 FM的典型频道是100kHz,其频谱划分如图所示
各国许可证签发机构制定发射信号的频率稳定度、频谱纯度等特征指标。事实上的接收标准已出现在常规设备中。例如,信噪比(SNR)或信纳比[(信号+噪声+失真)/(噪声+失真),SINAD]可以得到最小输入功率电平,如果低于该电平SNR或SINAD将低于26dB。RDS块误码率(BLER)表示包含一个或多个不可纠正误码的数据块占全部接收数据块的百分数,通常限于5%或更低。总的来说,并没有规定设计和制造过程中需要测试的特性。相反,设计工程师可以较灵活地设置设计和制造的极限参数。因此,任何测试方法都需要覆盖合理范围的值以支持更宽的应用范围。
接收机设计特性的一致意见
高端FM芯片、模块、参考设计和设备的设计工程师通常认可11项接收机测试(见图2)。除SNR、SINAD和BLER之外,还包括接收信号强度指示(RSSI)、接收灵敏度、AM抑制、立体声平衡、杂散响应/镜像抑制、总谐波失真(THD)、导频抑制和三阶截点(IP3)。
图2 这11项测试已成为FM芯片、模块、参考设计和设备设计阶段的主要测试项
RSSI值
RSSI反映设备接收到平均功率的强度,它通常使用检测器或模数转换器(ADC)测量在设备中频(IF)级或基带的功率。实质上,我们需要确定一个已知功率信号发送到设备所产生的RSSI值符合规定的范围。从测试角度看,这需要一个已知频率、调制和功率的信号源,再将设备的测量结果与信号源对比。
RDS灵敏度/块误码率
这是一种盲算,即只通过接收机完成测量无需了解测试设备实际发送的数据。接收机使用RDS协议的编码机制区别正确数据位和错误数据位并进行校正。RDS灵敏度/块误码率是具有一个或多个不可校正比特位的接收数据块数与接收数据块总数的比值。
该测试的指标阈值典型值是5%,这决定了设备输入端的接收功率电平,如果低于此电平那么BLER≥5%。这里,测试系统将根据RDS协议提供已知功率调制的FM信号,并且当误码率高于指定阈值时设备上就会有显示。
接收灵敏度、SNR、THD和SINAD
接收灵敏度通过输入已知功率的FM信号进行测量,同时跟踪SNR(或SINAD)直至它低于某个阈值(SNR的阈值通常是26dB)。对于SNR,我们在设备音频输出端测量有用信号与带内噪声的比值。某些滤波器,如A加权、C加权和ITUR 468(见图3)等,可用于抓取的音频数据中,以分析测试某些特定指标。
图3 在分析SNR时,可以使用某些滤波器并根据具体要求获得结果
测量SINAD时需要考虑失真因素。类似于THD测量设备音频输出端带内谐波引起的失真,SINAD测量采用同样的测试流程但使用不同的分析函数分析THD测试采集的数据。在THD和SINAD两种情况下,测试仪提供FM信号和音频信号(通常为1kHz)并采集设备音频输出用于后处理。
AM抑制
在AM抑制测试中,我们希望测量FM接收机对信号调幅的抑制能力。在衰落过程中,发射机失真和其它条件会使FM信号变为幅度调制。为了测试抑制调幅的性能,我们向设备提供具有已知AM调制(例如30%)的FM信号,因此设备接收的信号同时具有FM和AM特性。通过测量设备的音频输出电压,并且去掉AM之后再测一次,我们就能测量输出电平的比值,即抑制的度量。
立体声平衡
立体声平衡用于估计设备在左声道和右声道之间保持信号平衡的能力。进行立体声平衡测试时,我们先发送一个左、右声道音频电平相等的信号,然后分别测量左声道和右声道的音频输出电平。两个声道的音频输出功率电平的差就是不平衡的度量。
杂散响应/镜像抑制
在理想条件下,FM接收机仅响应有用信号而且完全抑制镜像信号和杂散信号。然而,镜像信号或杂散会产生较小而且有限信号响应。杂散响应/镜像抑制测量设备抑制镜像频率及其它杂散信号的能力。实际上,设备的音频输出仅用有用信号测量,然后有用信号和表示镜像或杂散的信号同时输入,测量音频输出的改变并与首次测试结果比较得到抑制比。
导频抑制
立体声信号(包含分立的左声道和右声道内容)是基于19kHz导频信号产生的。接收机一旦检测到这个信号就会在23kHz~53kHz范围来解调信号,而不是在单声道信号频段(30Hz~15kHz)。不管怎样,导频信号不应在23kHz~53kHz频带范围内产生音频信号。然而,导频却会产生一个很小的有限信号,所以必须让它低于某个阈值。一种测试导频抑制的方法是发送一个1kHz音频的FM信号至设备并采集音频输出。分析此音频输出,1kHz音频信号的功率与19kHz导频信号的功率的比值即为抑制比。
三阶截点-IP3
三阶截点是失真的度量。IP3代表基频(f1,有用信号)功率与3阶互调产物(2f1-f2和2f2-f1)功率相等的点(虚拟点)。这里,配置设备进行SNR或SINAD测量并输入FM信号(f1)得到SNR或SINAD读数。然后,输入CW(未调制)信号(f2)至该设备并且f1和f2的功率从同等功率起点开始以相等步长增加直至达到灵敏度的临界点。FM音频的功率电平即为IP3截点。
- 面向产品制造的MIMO WLAN测试方法(06-16)
- 超外差接收器MAX1470电路调整及天线匹配(06-08)
- 利用A-GPS提高全球定位系统应用的性能(06-20)
- 世强AFBR-8420Z:业界首款100G CFP2光模块(08-06)