面向产品制造的MIMO WLAN测试方法
从传统的或者MIMO的前导(preamble)中分析出所有发射器共有的某些发射器的属性。例如,数据包开始的载波频率的动态变化,以及前导尾部的频率偏移。根据MIMO的前导还可以分析出每个发射器的其他的发送信号属性,例如Tx功率、I/Q不均衡和频谱平坦度。通过对比合成后的信号与根据从MIMO前导估算出的信道响应得到的理想合成信号,我们可以测量出整个发射器质量的EVM指标。这种测量要求在分析软件之前就要知道数据包中的数据内容。但是,发射器的扰码(transmitter scrambler)可以对每个报文都不同,因为起始状态是由分析软件分析出来的。
任何会引起信号质量下降低于预订界限的发射器减损都将降低合成信号的EVM。这包括压缩和I/Q不均衡。相比单VSG和VSA外加合成器与高速开关的测试方案,这种系统配置无法测量出射频链路隔离度,也无法定位出某条发送链路的故障。如果可靠的安装能够提供20dB隔离度,那么射频链路隔离度也不是大不了的问题,20dB的隔离度常用作链路之间进行充分隔离的规范指标量,以提供良好的MIMO性能。
对于接收器测试而言,将同样的信号送入待测设备的所有接收器中。如果待测设备启用一个接收器,那么可以测量出这一个接收器的灵敏度。如果启用了所有的接收器,那么由于最大比合并(MRC)而改进的灵敏度就验证了MIMO信号处理的重要部分。在一体式VSG和VSA外加合成器的测试方案中,发射器和接收器的测试是在MIMO模式下进行的,带有质量测试参数,具有合理的测试时间,测试成本较低。LitePoint IQflex外加合成器支持这种测试方法,为用户提供了性能可靠而出色的测试方案。这种测试方法的不足之处在于,它需要已知MIMO发射器发射的数据才能进行测量,并且无法测量射频链路之间的隔离度。
单VSG/VSA外加高速开关的测试方案
在这一配置方案下,如图4所示,MPTA被一个开关所代替,去掉了合成器。ODM利用IQflex和现有的射频开关已经开发出了与此类似的配置方案,其中开关是由测试软件直接控制的。
图4 单IQflex外加高速开关无合成器的MIMO待测设备测试方案
对于发送测试,这种配置无法检验所有的发射器是否在相同时间发送信号。这一配置与一体式VSG和VSA外加合成器与高速开关的配置方案的主要差别在于接收器的测试。相比MPTA,这一配置无法将VSG信号同时送入待测设备的所有接收器中。因此,它无法检验待测设备MIMO接收器内的MRC处理过程。
由于这种配置是由现有的器件组装而成的,它在测量Rx PER时无法进行Tx/Rx切换,并且可能需要较长的测试时间,因为其链路切换是由测试控制软件实现的。而且,其精确的接收器灵敏度测量的速度对于生产测试应用来说可能太慢了。
这一配置相比合成器配置的优势在于它能够测量射频链路之间的隔离度。但是相比MPTA配置,它在接收器测试方面有很大的局限性。
比较
表1列举了每种测试方案能够测量的参数以及功能。
- 宋俊德:3G与WIMAX竞争中融合 终端内容趋同(08-23)
- IEEE同意新WiFi速度标准 支持VoIP和流媒体(08-29)
- 第三代MIMO芯片支持240Mbps数据速率(09-16)
- 多载波技术在3G网络部署中的应用(09-11)
- MIMO无线信道中空间相关性的研究(10-02)
- MIMO OFDM无线局域网研究及关键技术(10-16)