基于SOPC的高速数据采集系统的分析与设计
时间:01-01
来源:21IC
点击:
0 引言
传统数据采集卡多采用PCI或ISA总线接口,这种方式安装麻烦、价格昂贵,且受计算机插槽数量、地址、中断资源限制,有扩展性差等缺点。而USB通用串行总线则具有安装方便、高带宽、易扩展等优点,其中USB2.0标准具有480Mbps的最高数据传输率,这使USB成为本系统所选接口的主要类型。控制方面,传统数据采集通常使用单片机或DSP作CPU来进行控制和数据处理。其中单片机的时钟频率低,无法适应高速数据采集;DSP虽能满足速度要求,但在速度提高的同时,也提高了成本。而用FPGA实现的SOPC则具有时钟频率高、内部延时小和配置灵活等优势。数据显示方面,采用虚拟仪器不但可按要求设计且变换灵活,还能执行传统仪器无法实现的许多功能。为此,本系统使用FPGA实现SOPC数据采集系统,并利用Labview实现系统的显示与控制。
1数据采集系统总体设计
基于SOPC的高速数据采集系统总体框图如图1所示。图中,ADC(Analog t0 Digital Converter)模数转换器采用的是8位高速模数转换器TLV5580。调理电路用于实现对输入信号的限幅、限压、滤波,并用增加输入阻抗的措施来获取预期有效信号,同时保护后端AD转换芯片。FPGA采用ALTERA公司的EPIC6Q240芯片来实现ADC控制及FIFO数据缓存;基于FPGA芯片的控制系统可直接用逻辑实现,也可在其基础上实现SOPC对数据的采集、传输的控制。USB采用CYPRESS公司可支持USB2.0协议的高速芯片CY7C68013。FPGA可控制TLV5580的连续采样,并将数据送到FIFO数据缓存。当采集到一定量的数据后,CY7C68013便采用slave fifo方式将数据送给PC端,并由PC端软件Labview实现的虚拟仪器进行显示和控制等处理。
2数据采集系统硬件设计
2.1 模数转换器TLV5580及其控制
TLV5580是一款高速8位模拟/数字转换器,它具有80 Msps采样速率,是一款3.3 V工作电压的低功耗6级流水线结构高速A/D芯片。它的采样信号每1个时钟周期可通过一个STAGE,完成连续转换到数据输出共需6个时钟周期。此流水线结构由6个ADC/DAC级和一个终极快闪ADC构成。采用A/D-D/A两次变化以及纠错逻辑的目的在于进行差错校正,以保证流水线上各个阶段在满操作温度范围下,ADC的偏移量能够得到补偿且不丢失代码。TLV5580的时序图如图2所示。可以看出,该A/D转换器时序简单,容易控制。当输出使能(OE)为低电平时,一旦数据流水线满,其数据将在每一个时钟周期的上升沿输出。
2.2 USB芯片CY7C68013(FX2)
为了满足对USB传输速度较高的需要,本设计选择了Cypress公司内置USB接口的微控制器芯片EZUSBFX2。FX2系列芯片独特的结构使其数据传输速度最高可达56Mbps,故可最大限度地满足USB2.0的带宽。此外,CY7C68013提供有一个串行接口引擎(SIE),可负责大部分USB2.0协议的处理工作,从而大大减轻USB协议处理的工作量,并可提供4KB的FIFO,以保证数据高速传输的需要。CY7C68013可配置成三种不同的接口模式:Ports、GPIF Master和Slave FIFO。本项目采用Slave FIFO模式。在该模式下,外部逻辑或外部处理器直接连接到FX2的端点FIFO,因为外部逻辑可以直接控制FIFO,所以,FIFO的基本控制信号(标志、片选、使能)均由FX2的引脚引出。其外部控制可以是同步,也可以是异步,可以使用内部时钟,也可以使用外部时钟。
2.3 FPGA器件EPIC60240C6
FPGA (Field Programmable Gate Array)即现场可编程门阵列。本设计选用的是ALTERA公司的EPIC60240芯片,该芯片的工作电压为1.5 V,存储器密度可达5980个逻辑单元,它包含20个128x36位RAM块,总的RAM空间达92160位,此外还内嵌了2个锁相环电路和一个用于连接SDRAM的特定双数据率接口,故可支持多种不同的I/O标准。事实上,这里的FPGA除了可以直接编程以进行逻辑控制外,也可在此基础上构建SOPC系统,以便使用软、硬件协同方法,与SDRAM构成一个大容量的FIFO来对SDRAM以及MD转换器进行控制,同时完成与USB器件的协同工作。
2.4 SOPC及其设计
SOPC (System on a Programmable Chip)即可编程片上系统。它可以由单个芯片完成整个系统的主要逻辑功能;这种可编程系统具有灵活的设计方式,而且可裁减、可扩充、可升级。本设计采用ALTERA公司率先推出的SOPC解决方案,来将处理器、存储、I/O口等系统所需集成到一个FPGA器件上,并对其进行软、硬件配置,从而实现对数据的采集、传输、显示控制。图3所示是其SOPC系统框图。
3数据采集系统软件设计
本系统软件包括SOPC系统程序、USB固件程序、驱动程序和应用程序等4个方面的设计。其中SOPC系统程序和USB固件程序是整个程序设计的核心。
传统数据采集卡多采用PCI或ISA总线接口,这种方式安装麻烦、价格昂贵,且受计算机插槽数量、地址、中断资源限制,有扩展性差等缺点。而USB通用串行总线则具有安装方便、高带宽、易扩展等优点,其中USB2.0标准具有480Mbps的最高数据传输率,这使USB成为本系统所选接口的主要类型。控制方面,传统数据采集通常使用单片机或DSP作CPU来进行控制和数据处理。其中单片机的时钟频率低,无法适应高速数据采集;DSP虽能满足速度要求,但在速度提高的同时,也提高了成本。而用FPGA实现的SOPC则具有时钟频率高、内部延时小和配置灵活等优势。数据显示方面,采用虚拟仪器不但可按要求设计且变换灵活,还能执行传统仪器无法实现的许多功能。为此,本系统使用FPGA实现SOPC数据采集系统,并利用Labview实现系统的显示与控制。
1数据采集系统总体设计
基于SOPC的高速数据采集系统总体框图如图1所示。图中,ADC(Analog t0 Digital Converter)模数转换器采用的是8位高速模数转换器TLV5580。调理电路用于实现对输入信号的限幅、限压、滤波,并用增加输入阻抗的措施来获取预期有效信号,同时保护后端AD转换芯片。FPGA采用ALTERA公司的EPIC6Q240芯片来实现ADC控制及FIFO数据缓存;基于FPGA芯片的控制系统可直接用逻辑实现,也可在其基础上实现SOPC对数据的采集、传输的控制。USB采用CYPRESS公司可支持USB2.0协议的高速芯片CY7C68013。FPGA可控制TLV5580的连续采样,并将数据送到FIFO数据缓存。当采集到一定量的数据后,CY7C68013便采用slave fifo方式将数据送给PC端,并由PC端软件Labview实现的虚拟仪器进行显示和控制等处理。
2数据采集系统硬件设计
2.1 模数转换器TLV5580及其控制
TLV5580是一款高速8位模拟/数字转换器,它具有80 Msps采样速率,是一款3.3 V工作电压的低功耗6级流水线结构高速A/D芯片。它的采样信号每1个时钟周期可通过一个STAGE,完成连续转换到数据输出共需6个时钟周期。此流水线结构由6个ADC/DAC级和一个终极快闪ADC构成。采用A/D-D/A两次变化以及纠错逻辑的目的在于进行差错校正,以保证流水线上各个阶段在满操作温度范围下,ADC的偏移量能够得到补偿且不丢失代码。TLV5580的时序图如图2所示。可以看出,该A/D转换器时序简单,容易控制。当输出使能(OE)为低电平时,一旦数据流水线满,其数据将在每一个时钟周期的上升沿输出。
2.2 USB芯片CY7C68013(FX2)
为了满足对USB传输速度较高的需要,本设计选择了Cypress公司内置USB接口的微控制器芯片EZUSBFX2。FX2系列芯片独特的结构使其数据传输速度最高可达56Mbps,故可最大限度地满足USB2.0的带宽。此外,CY7C68013提供有一个串行接口引擎(SIE),可负责大部分USB2.0协议的处理工作,从而大大减轻USB协议处理的工作量,并可提供4KB的FIFO,以保证数据高速传输的需要。CY7C68013可配置成三种不同的接口模式:Ports、GPIF Master和Slave FIFO。本项目采用Slave FIFO模式。在该模式下,外部逻辑或外部处理器直接连接到FX2的端点FIFO,因为外部逻辑可以直接控制FIFO,所以,FIFO的基本控制信号(标志、片选、使能)均由FX2的引脚引出。其外部控制可以是同步,也可以是异步,可以使用内部时钟,也可以使用外部时钟。
2.3 FPGA器件EPIC60240C6
FPGA (Field Programmable Gate Array)即现场可编程门阵列。本设计选用的是ALTERA公司的EPIC60240芯片,该芯片的工作电压为1.5 V,存储器密度可达5980个逻辑单元,它包含20个128x36位RAM块,总的RAM空间达92160位,此外还内嵌了2个锁相环电路和一个用于连接SDRAM的特定双数据率接口,故可支持多种不同的I/O标准。事实上,这里的FPGA除了可以直接编程以进行逻辑控制外,也可在此基础上构建SOPC系统,以便使用软、硬件协同方法,与SDRAM构成一个大容量的FIFO来对SDRAM以及MD转换器进行控制,同时完成与USB器件的协同工作。
2.4 SOPC及其设计
SOPC (System on a Programmable Chip)即可编程片上系统。它可以由单个芯片完成整个系统的主要逻辑功能;这种可编程系统具有灵活的设计方式,而且可裁减、可扩充、可升级。本设计采用ALTERA公司率先推出的SOPC解决方案,来将处理器、存储、I/O口等系统所需集成到一个FPGA器件上,并对其进行软、硬件配置,从而实现对数据的采集、传输、显示控制。图3所示是其SOPC系统框图。
3数据采集系统软件设计
本系统软件包括SOPC系统程序、USB固件程序、驱动程序和应用程序等4个方面的设计。其中SOPC系统程序和USB固件程序是整个程序设计的核心。
SOPC 虚拟仪器 USB2 0 数据采集 接口 相关文章:
- 赛灵思和Xylon携手为嵌入式GUI系统开发推出灵活的低成本可编程logiTAP平台(01-12)
- 基于SOPC的分布式干扰系统嵌入式网关设计(04-15)
- 基于SOPC的数据采集系统设计(06-03)
- LabVIEW中BP神经网络的实现及应用(06-19)
- 基于USB接口和FPGA控制的虚拟仪器设计(08-30)
- 基于LabVIEW的无线USB高速数据传输系统(04-02)