一种基于流水线的SpaceWire路由器研究
时间:10-15
来源:与非网
点击:
近年来,随着SpaceWire总线技术在航天航空领域的不断应用,SpaceWire路由器在理论和技术应用方面也得到了飞速发展。国外,欧洲航天局 (ESA)已经将速度为200 Mb/s抗辐射的SpaceWire路由器应用到ESA的航天任务中。国内,目前对SpaceWire路由器的研究还处于初级阶段,设计的 SpaceWire路由器最高速度也只能达到100 Mb/s。为了提高路由器的传输速度,这里提出了一种基于流水线技术的SpaceWire路由器。
1 SpaceWire路由器概述
SpaceWire路由器由一定数量链接接口单元和路由单元构成。接口单元主要负责连接各SpaceWire接点,路由单元负责数据的路由交换。
1.1 SpaceWire数据链路层接口单元
SpaceWire数据链路接口主要由连接器、LVDS驱动器、编码器、译码器、状态机、收发FIFO以及主机接口组成,其结构如图1所示。
发送器接收来自发送FIFO的数据,使用DS编码技术编码这些数据并且进行发送。接收器负责解码DS(Din和Sin)信号产生N-Chars字符序列(data,EOP,EEP),这些字符序列通过接收FIFO传送给主机系统。
FIFO的使用简化了数据链路与主机系统之间的接口。在系统复位以后,发送和接收FIFO都是空的。在链路连接建立以后,如果接收到FCT表明链路另一端允许向它发送数据,那么被写入发送FIFO的数据将被发送。当接收FIFO内仍然有可用空间时,接收FIFO能够接收数据。主机系统从接收FIFO中读取数据。在FIFO全空或全满以前,FIFO的半空或半满标志会触发处理器干预对FIFO的读写操作。这种机制能够控制通过链路的数据流,使数据链路接口保持高速数据吞吐。
状态机用来负责控制接口单元的整体操作,它会提供链路初始化,普通操作和错误服务。
1.2 SpaceWire路由器单元
为了简化基于SpaceWire的通讯系统的复杂度,很重要的就是对SpaceWire路由单元的设计。如图2所示,在图中所设计的SpaceWire路由器中包括8个SpaceWire端口,即2个外部端口、1个内部配置端口、路由表、控制寄存器、状态/错误寄存器、控制逻辑、无阻塞交互开关等。
低延迟、虫洞路由和无阻塞交换开关使数据包能够到达任意一个SpaceWire端口和外部端口,或者也可以由配置端口直接访问任意一个SpaceWire端口和外部端口。所设计SpaceWire端口完全支持SpaceWire标准,提供高速的、双向的通讯。每个外部端口包括一个发送FIFO和一个接收FIFO,可以发送接收字符和包结束标志。
Time-code端口会和计数器一起被提供用来方便Time-code的传播。当一个有效的Time-code到达一个路由端口时,它也会被发送到其他 Spacewire端口,一个TICK_OUT信号会在Time-code端口被产生。路由器可以用Time-code端口提供的TICK_IN信号做为 Time-code的操作管理。
配置端口可以配置任何SpaceWire端口和外部端口。它包括可以控制SpaceWire端口、外部端口和交换开关的寄存器。配置端口为各种端口和交换开关都设置了状态寄存器。用配置端口的读命令可以读这些寄存器,从而来读出路由器的状态和错误信息,而且一些状态引脚上的状态和错误信息可以被选择输出。
路由表可以通过配置端口来访问。逻辑地址端口映射和优先位都可以在路由表中进行设置,路由表常常用来控制组适应路由和交互开关中的优先仲裁。
1.3 虫洞路由
SpaceWire路由器是基于虫洞路由上进行设计的。虫洞路由是包路由的一种形式。每一个包的包头包含着目的地的地址信息。每当有一个包到达路由器时,它就立即检测这个包的目的地址,然后按照该地址转发这个包到相应的输出端口。如果要求的输出端口是"空闲"(free)状态,则这个包会被立即转发到这个输出端口。这时,该端口就会被打上"忙"(blasy)状态标记,直到这个包的最后一个字符即"包尾"(EOP)通过路由器转发出去。
虫洞路由如图3所示,图中一个包从一个节点发出,通过路由器到达另外一个节点。包头标记为黑色,其余部分为灰色。路由器负责在输入端口和空闲的输出端口之间建立连接,当检测到EOP或EEP时,断开连接,释放输出端口为空闲状态,准备接收其他端口来的包。输出端口忙时,输入端口阻塞输入包,直到其空闲。通过输入端口相远节点发送FCT来实现,直到输出端口空闲时,路由器才取消阻塞。以上是虫洞路由和流量控制之间的关系。
2 基于流水线的SpaceWire路由器
SpaceWire路由器将数据从输入端传递到输出端的过程一般需要进过三个阶段:首先,从输入端读数据,将数据包中包头所包含的目标地址发送给路由查找表;再次,由路由查找表对目标地址进行查找,确定该数据包所要发送的输出端;最后,将数据包发送到目标地址所指的输出端。具体结构如图4所示。
1 SpaceWire路由器概述
SpaceWire路由器由一定数量链接接口单元和路由单元构成。接口单元主要负责连接各SpaceWire接点,路由单元负责数据的路由交换。
1.1 SpaceWire数据链路层接口单元
SpaceWire数据链路接口主要由连接器、LVDS驱动器、编码器、译码器、状态机、收发FIFO以及主机接口组成,其结构如图1所示。
发送器接收来自发送FIFO的数据,使用DS编码技术编码这些数据并且进行发送。接收器负责解码DS(Din和Sin)信号产生N-Chars字符序列(data,EOP,EEP),这些字符序列通过接收FIFO传送给主机系统。
FIFO的使用简化了数据链路与主机系统之间的接口。在系统复位以后,发送和接收FIFO都是空的。在链路连接建立以后,如果接收到FCT表明链路另一端允许向它发送数据,那么被写入发送FIFO的数据将被发送。当接收FIFO内仍然有可用空间时,接收FIFO能够接收数据。主机系统从接收FIFO中读取数据。在FIFO全空或全满以前,FIFO的半空或半满标志会触发处理器干预对FIFO的读写操作。这种机制能够控制通过链路的数据流,使数据链路接口保持高速数据吞吐。
状态机用来负责控制接口单元的整体操作,它会提供链路初始化,普通操作和错误服务。
1.2 SpaceWire路由器单元
为了简化基于SpaceWire的通讯系统的复杂度,很重要的就是对SpaceWire路由单元的设计。如图2所示,在图中所设计的SpaceWire路由器中包括8个SpaceWire端口,即2个外部端口、1个内部配置端口、路由表、控制寄存器、状态/错误寄存器、控制逻辑、无阻塞交互开关等。
低延迟、虫洞路由和无阻塞交换开关使数据包能够到达任意一个SpaceWire端口和外部端口,或者也可以由配置端口直接访问任意一个SpaceWire端口和外部端口。所设计SpaceWire端口完全支持SpaceWire标准,提供高速的、双向的通讯。每个外部端口包括一个发送FIFO和一个接收FIFO,可以发送接收字符和包结束标志。
Time-code端口会和计数器一起被提供用来方便Time-code的传播。当一个有效的Time-code到达一个路由端口时,它也会被发送到其他 Spacewire端口,一个TICK_OUT信号会在Time-code端口被产生。路由器可以用Time-code端口提供的TICK_IN信号做为 Time-code的操作管理。
配置端口可以配置任何SpaceWire端口和外部端口。它包括可以控制SpaceWire端口、外部端口和交换开关的寄存器。配置端口为各种端口和交换开关都设置了状态寄存器。用配置端口的读命令可以读这些寄存器,从而来读出路由器的状态和错误信息,而且一些状态引脚上的状态和错误信息可以被选择输出。
路由表可以通过配置端口来访问。逻辑地址端口映射和优先位都可以在路由表中进行设置,路由表常常用来控制组适应路由和交互开关中的优先仲裁。
1.3 虫洞路由
SpaceWire路由器是基于虫洞路由上进行设计的。虫洞路由是包路由的一种形式。每一个包的包头包含着目的地的地址信息。每当有一个包到达路由器时,它就立即检测这个包的目的地址,然后按照该地址转发这个包到相应的输出端口。如果要求的输出端口是"空闲"(free)状态,则这个包会被立即转发到这个输出端口。这时,该端口就会被打上"忙"(blasy)状态标记,直到这个包的最后一个字符即"包尾"(EOP)通过路由器转发出去。
虫洞路由如图3所示,图中一个包从一个节点发出,通过路由器到达另外一个节点。包头标记为黑色,其余部分为灰色。路由器负责在输入端口和空闲的输出端口之间建立连接,当检测到EOP或EEP时,断开连接,释放输出端口为空闲状态,准备接收其他端口来的包。输出端口忙时,输入端口阻塞输入包,直到其空闲。通过输入端口相远节点发送FCT来实现,直到输出端口空闲时,路由器才取消阻塞。以上是虫洞路由和流量控制之间的关系。
2 基于流水线的SpaceWire路由器
SpaceWire路由器将数据从输入端传递到输出端的过程一般需要进过三个阶段:首先,从输入端读数据,将数据包中包头所包含的目标地址发送给路由查找表;再次,由路由查找表对目标地址进行查找,确定该数据包所要发送的输出端;最后,将数据包发送到目标地址所指的输出端。具体结构如图4所示。
- IMT-Advanced研究和标准化进展(08-22)
- PTN在3G传送网中的应用研究(04-14)
- 动态路由协议OSPF原理和特性(01-10)
- IPv4/IPv6双栈方法(01-16)
- 网卡问题(01-24)
- 虚拟局域网技术VLAN的管理与测试(01-26)