DPI处理器在多核平台上的应用
时间:08-11
来源:中电网
点击:
前言
在目前的安全、数通及电信等诸多领域都可以看到基于多核处理器的设计,它们超强的处理能力使得以往繁复的系统得以减小体积,实现单板平台。然而,在享受处理性能提升的同时,结构设计人员却不得不忍受多核高功耗的折磨,动辄几十瓦甚至上百瓦的功耗成为多核进入更多领域的一个瓶颈。在目前绿色环保的政策下如何实现机房或设备的低功耗成为系统工程师必须考虑的一个重要设计因素。随着多核集成CPU数量的不断增加,单纯靠芯片工艺和代码优化来降低功耗越来越难,此时必须要从电路系统设计的角度来全盘考虑问题。
多核处理器在数据处理过程中的密集运算使得芯片的动态功耗不断增加,因此可将处理器的一部分负荷卸载到专用加速器中,以此来降低核心芯片的功耗。一方面它可以容许处理器工作在较低的频率上,大幅降低系统的总功耗,另一方面还可以通过释放处理器来提升整个系统的性能,或者增加高附加值的应用;最后还可以降低对处理器的要求,同时降低系统的BOM成本。
目前安全领域的DPI检测就是一个计算密集型应用,它要求扫描整个数据包,计算开销非常大。现有网络设备在实现此功能时大多采用软件方案,在独占一个CPU核的情况下也只能达到Mbps的处理能力。实验表明,通过加入LSI公司的Tarari DPI专用芯片可以使系统功耗大幅降低,而处理能力可提升至Gbps。本文将以Tarari为例介绍DPI技术以及相关实现。
DPI技术及芯片介绍
DPI (Deep Packet Inspection),即"深度报文检测"。所谓"深度"是和普通的报文分析层次相比较而言的,"普通报文检测"仅分析IP包的4层以下的内容,包括源地址、目的地址、源端口、目的端口以及协议类型,而DPI 除了对前面的层次分析外,还增加了应用层分析,识别各种应用及其内容,基本概念如图1所示。
在目前的安全、数通及电信等诸多领域都可以看到基于多核处理器的设计,它们超强的处理能力使得以往繁复的系统得以减小体积,实现单板平台。然而,在享受处理性能提升的同时,结构设计人员却不得不忍受多核高功耗的折磨,动辄几十瓦甚至上百瓦的功耗成为多核进入更多领域的一个瓶颈。在目前绿色环保的政策下如何实现机房或设备的低功耗成为系统工程师必须考虑的一个重要设计因素。随着多核集成CPU数量的不断增加,单纯靠芯片工艺和代码优化来降低功耗越来越难,此时必须要从电路系统设计的角度来全盘考虑问题。
多核处理器在数据处理过程中的密集运算使得芯片的动态功耗不断增加,因此可将处理器的一部分负荷卸载到专用加速器中,以此来降低核心芯片的功耗。一方面它可以容许处理器工作在较低的频率上,大幅降低系统的总功耗,另一方面还可以通过释放处理器来提升整个系统的性能,或者增加高附加值的应用;最后还可以降低对处理器的要求,同时降低系统的BOM成本。
目前安全领域的DPI检测就是一个计算密集型应用,它要求扫描整个数据包,计算开销非常大。现有网络设备在实现此功能时大多采用软件方案,在独占一个CPU核的情况下也只能达到Mbps的处理能力。实验表明,通过加入LSI公司的Tarari DPI专用芯片可以使系统功耗大幅降低,而处理能力可提升至Gbps。本文将以Tarari为例介绍DPI技术以及相关实现。
DPI技术及芯片介绍
DPI (Deep Packet Inspection),即"深度报文检测"。所谓"深度"是和普通的报文分析层次相比较而言的,"普通报文检测"仅分析IP包的4层以下的内容,包括源地址、目的地址、源端口、目的端口以及协议类型,而DPI 除了对前面的层次分析外,还增加了应用层分析,识别各种应用及其内容,基本概念如图1所示。
图1 DPI的基本概念 普通报文检测是通过端口号来识别应用类型的。如检测到端口号为80时,则认为该应用代表着普通上网应用。而当前网络上的一些非法应用会采用隐藏或假冒端口号的方式躲避检测和监管,造成仿冒合法报文的数据流侵蚀网络。此时采用L2~L4层的传统检测方法已无能为力了。DPI 技术就是通过对应用流中的数据报文内容进行探测,从而确定数据报文的真正应用。因为非法应用可以隐藏端口号,但目前较难隐藏应用层的协议特征。 Tarari系列芯片是实现上述功能的一款硬件加速器,它支持行业内标准的正则表达式,规则数可以达到上百万条,支持POSIX和PCRE。针对安全应用中所需的跨包检测,Tarari可以对400多万条数据的上下文进行处理。处理跨包的过程中Tarari会用内部缓存来自动记录跨包的上下文,包括正则表达式搜索树的状态、前一包的部分内容以及所选的指令。该系列芯片从第四代产品(T9000)开始采用ASIC设计,第五代产品则开始采用T10架构,产品目前包括T1000和T2000两个系列型号。各芯片间软件兼容,提供从250Mbps到10Gbps不同的速度等级,以满足不同应用的需求。 以T2000系列芯片为例,它外围存储采用低成本的DDR2 SDRAM芯片,无需TCAM或者RLDRAM等昂贵存储器。为了满足某些高性能场合的需求,T2000也提供扩展接口,方便实现性能升级。在系统接口方面T2000提供PCI、PCI Express等高速接口,每个PCIe通道都具有Gbps的有效吞吐能力,最高可以达到16Gbps。T2000最高可支持10G的单片峰值性能,通过级联两片T2000芯片可以提供16Gb/s的吞吐量。T2000 软件可同时监测多达四块16Gb/s PCIe电路板并提供负载均衡,从而为最苛刻的网络环境提供64Gb/s 的性能。T2000系列芯片的体积只有29mm*29mm,典型功耗为5W。 基于多核处理器的DPI平台设计 硬件平台设计 无论是Intel和AMD的x86架构,还是MIPs架构,无论是CISC还是RISC,Tarari都可以很好的支持这些主流的处理器技术。 以某公司基于MIPs的多核芯片为例,图2所示为Tarari芯片与MIPs多核的设计框图。由于 Tarari芯片具有PCI、PCI-X以及PCIe接口,因此Tarari可以通过这些接口与满足条件的多核处理器直接对接。对于很多高速应用,如果PCIe接口类型不匹配,也可以在PCIe与处理器间搭接PCIe与其它接口的转换桥片。对于低速应用,Tarari可以实现无RAM操作,即无需外围的DDR2芯片,通过内部存储器就可以实现数据处理。 图2所示电路的工作流程如下:当有数据包从GE接口进入MIPs多核处理器,处理器会通过PCIe接口或者HT桥片将其送入Tarari内容处理器,此时Tarari会通过内部的多个引擎对数据与规则集进行比对匹配,因为匹配规则在处理期间已经调入Tarari芯片的内部缓存,并且数据在处理过程中并不会进行任何形式的存储,所以匹配过程延时很小。匹配结束后,评估结果同样经过PCIe或者HT总线送回处理器,上层软件根据结果来决定对报文的处理。 |
- 意法半导体之宽带多媒体解决方案(01-12)
- 蓝牙技术硬件实现模式分析(01-11)
- 关于计算机接口(04-16)
- PC电源常见故障判断分析与排除 (04-16)
- 采用软处理器IP规避器件过时的挑战(05-04)
- 在Windows Vista中提高SATA硬盘性能(06-12)
鐏忓嫰顣舵稉鎾茬瑹閸╃顔勯弫娆戔柤閹恒劏宕�
- 妤傛ḿ楠囩亸鍕暥瀹搞儳鈻肩敮鍫濆悋閹存劕鐓跨拋顓熸殌缁嬪顨滅憗锟�
閸忋劍鏌熸担宥咁劅娑旂姴鐨犳0鎴滅瑩娑撴氨鐓$拠鍡礉閹绘劕宕岄惍鏂垮絺瀹搞儰缍旈懗钘夊閿涘苯濮幃銊ユ彥闁喐鍨氶梹澶歌礋娴兼ḿ顫呴惃鍕殸妫版垵浼愮粙瀣瑎...
- 娑擃厾楠囩亸鍕暥瀹搞儳鈻肩敮鍫濆悋閹存劕鐓跨拋顓熸殌缁嬪顨滅憗锟�
缁箖鈧拷30婢舵岸妫亸鍕暥閸╃顔勭拠鍓р柤閿涘奔绗撶€硅埖宸跨拠鎾呯礉閸斺晛顒熼崨妯烘彥闁喕鎻崚棰佺娑擃亜鎮庨弽鐓庣殸妫版垵浼愮粙瀣瑎閻ㄥ嫯顩﹀Ч锟�...
- Agilent ADS 閺佹瑥顒熼崺纭咁唲鐠囧墽鈻兼總妤勵棅
娑撴挸顔嶉幒鍫n嚦閿涘苯鍙忛棃銏n唹鐟欘枃DS閸氬嫮顫掗崝鐔诲厴閸滃苯浼愮粙瀣安閻㈩煉绱遍崝鈺傚亶閻€劍娓堕惌顓犳畱閺冨爼妫跨€涳缚绱癆DS...
- HFSS鐎涳缚绡勯崺纭咁唲鐠囧墽鈻兼總妤勵棅
鐠у嫭绻佹稉鎾愁啀閹哄牐顕抽敍灞藉弿闂堛垼顔夐幒鍦欶SS閻ㄥ嫬濮涢懗钘夋嫲鎼存梻鏁ら敍灞藉簻閸斺晜鍋嶉崗銊╂桨缁崵绮洪崷鏉款劅娑旂姵甯夐幓顡嶧SS...
- CST瀵邦喗灏濆銉ょ稊鐎广倕鐓跨拋顓熸殌缁嬪顨滅憗锟�
閺夊孩妲戝ú瀣╁瘜鐠佽绱濋崗銊╂桨鐠佸弶宸緾ST閸氬嫰銆嶉崝鐔诲厴閸滃苯浼愮粙瀣安閻㈩煉绱濋崝鈺傚亶韫囶偊鈧喕鍤滅€涳附甯夐幓顡塖T鐠佹崘顓告惔鏃傛暏...
- 鐏忓嫰顣堕崺铏诡攨閸╃顔勭拠鍓р柤
娑撳洣绗€妤傛ɑ銈奸獮鍐叉勾鐠у嚖绱濇潻娆庣昂鐠囧墽鈻兼稉杞扮稑閸︺劌鐨犳0鎴炲Η閺堫垶顣崺鐔枫亣鐏炴洘瀚甸懘姘剧礉閹垫挷绗呴崸姘杽閻ㄥ嫪绗撴稉姘唨绾偓...
- 瀵邦喗灏濈亸鍕暥濞村鍣洪幙宥勭稊閸╃顔勭拠鍓р柤閸氬牓娉�
鐠愵厺鎷遍崥鍫ユ肠閺囨潙鐤勯幆鐙呯礉缂冩垵鍨庨妴渚€顣剁拫鍙樺崕閵嗕胶銇氬▔銏犳珤閵嗕椒淇婇崣閿嬬爱閿涘本鍨滅憰浣圭壉閺嶉绨块柅锟�...
栏目分类