微波EDA网,见证研发工程师的成长!
首页 > 通信和网络 > 通信网络技术文库 > TD-HSUPA:更高传输速率改善用户体验

TD-HSUPA:更高传输速率改善用户体验

时间:01-21 来源:C114中国通信网 点击:

摘要:

TD-SCDMA(以下简称TD)系统引入HSUPA技术后,将极大地提高对上行分组数据的支持,以及系统承载数据服务的容量,并为高速数据业务提供更好的覆盖。用户将能感受到更好的网络质量、更短的服务反应时间和更可靠的服务。同时,TD-HSUPA 标准化工作的完成于TD后续产品的开发也具有指导和参考作用。

一、概述

随着3GPP HSDPA标准化的完成,3G系统对下行分组数据业务的支持能力有了很大的增强。这自然就引发了一个考虑,HSDPA采用的关键技术是否可以应用于上行分组业务的优化,进而对覆盖、吞吐量以及时延等上行性能进行改善。于是,3GPP启动了针对HSUPA技术的研究,最早是建立了WCDMA上行增强可行性分析的研究项目。随后,TDD厂家也提出并建立了TDD上行增强研究项目,对基站快速调度、AMC、HARQ等技术进行评估。作为3GPP标准重要组成部分的TD-SCDMA,也在HSUPA方面做了很多研究和评估工作。

二、四项关键技术提高峰值速率

上行增强技术的主要目的是显著提高分组数据的峰值传输速率,以及上行分组数据的总体吞吐率,同时减少传输延迟和误帧率。在TD系统中,与HSDPA相似,HSUPA主要考虑的技术包括AMC、HARQ、Node B快速调度,以及用户终端(UE)如何共享上行信道资源。

1. 上行资源共享

在上行资源共享方面,TDD与FDD系统有所不同。在FDD系统中,HSUPA与HSDPA的不同之处在于:HSDPA中,HS-DSCH作为一个共享信道,为多用户共享;而HSUPA中,每个用户都有自己到Node B的数据链路。TDD系统则由于使用cell-specific扰码区分小区,因而上行码道受限,因此,增强技术考虑的出发点还是基于共享资源的考虑,采用共享机制可以缓解资源受限的问题。

2. Node B快速调度

Node B快速调度的主要好处在于减小传输时延和提高吞吐量,这是因为减少了Iub接口上的传输过程以及对重传、UE缓存测量的快速反馈。

除了在时延和吞吐量方面的好处,TD上行增强采用基站调度在资源分配和干扰控制两个方面也都带来了好处。由于TDD上行码道资源受限,对物理资源采用共享形式,并由基站进行快速调度,可以缓解码道资源受限以及快速适应无线环境变化。而且,通过快速控制UE的速率,基站也可以更好地控制空中接口的干扰情况。

3. AMC

作为链路自适应技术的AMC,通过在信道质量好的情况下采用高阶调制来提高系统容量,其原理与HSDPA中类似。

在上行采用什么样的调制方式,需要从系统性能和对UE功放的影响两方面进行分析。根据仿真结果,采用8PSK和16QAM,相对于仅用QPSK的情况,系统容量可提升54%~56%。

在上行,峰均比也是一个需要注意的问题,因此,对于采用高阶调制后对UE功率回退的影响也进行了分析。结果显示,8PSK的峰均比较QPSK方式略低。对于16QAM,峰均比较QPSK方式高出2.1 dB。

4. HARQ

类似于HSDPA,HARQ可以对错误数据进行快速重传,并且减少无线链路控制(RLC)重传以改善用户体验。因此,在上行增强中对HARQ的考虑主要在于减少时延和提高用户及系统的吞吐量。HARQ的采用对物理层和MAC层都将产生影响,在上行增强中引入HARQ,需要慎重考虑Node B、UE存储空间的要求,以及带来的信令负荷、复杂度、UE功率限制等因素。

5. TD-SCDMA HSUPA 与HSDPA的比较

虽然HSUPA与HSDPA采用的关键技术相同,但是在具体的实现方式上,HSUPA还是与HSDPA有着一些差别(见表1)。这主要是由于在上行,调度控制在基站,但是数据传输却在UE进行,因此基站需要获得调度相关的信息,并且上行干扰控制也是一个需要慎重考虑的问题。

表1 HSUPA与HSDPA的差异

三、系统改进支持新标准

1. UE侧MAC-e/es结构

UE侧MAC-e/es实体负责处理E-DCH相关功能,主要分为以下四部分。

HARQ实体处理HARQ协议的相关功能。其负责MAC-e负载的存储与重传,HARQ协议相关配置信息由RRC通过MAC-Cotrol SAP进行配置;HARQ实体确定L1层传输需要的HARQ进程ID、E-TFC、重传序号RSN及power offset的指示等,HARQ传输的RV参数可以从RSN中推导出,而且,RRC也能够将L1层的每次传输都配置为RV=0。

复用及TSN设置实体负责将多个MAC-d PDU级联到一个MAC-es PDU中,以及将一个或多个MAC-es PDU复用到一个MAC-e PDU,并根据E-TFC选择功能的指示,准备在下一个TTI内传输。同时,该实体也负责管理与设置每条逻辑信道中每个MAC-es PDU的TSN。

E-TFC选择实体根据从UTRAN接收到的调度信息(来自E-AGCH)及RRC通知的Ser

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top