VoWi-Fi的设计挑战剖析
时间:09-29
来源:C114中国通信网
点击:
VoWi-Fi的电池寿命问题
阻碍VoWi-Fi手机迅速普及的一个重要因素可能是电池寿命。许多第一代设备的待机时间比大多数便携式电话的通话时间还要短。显然,要使VoWi-Fi手机为消费者所广泛采用,这些设备的电池寿命必须能够比得上目前的便携式、无绳或DECT电话的电池寿命。更复杂的问题是,用户已习惯便携式电话的小体积,这就在设备可使用的电池大小方面对OEM或ODM设置了限制。
设备中的Wi-Fi组件是VoWi-Fi手机中消耗最多电池电量的组件之一。虽然新一代Wi-Fi芯片的耗电量将大大减少,但VoWi-Fi手机中许多其他器件要共享有限的电量。例如,传统的DSP设计需要多个处理器或系统级芯片器件来执行所有的VoIP功能。
在这些设计中,一般的人机界面(MMI)以及VoIP通话控制功能使用传统的应用处理器(ARM、MIPS等),而DSP则用于语音到数据包到语音的转换。此方法在便携设备的设计中暴露出很多缺点。
最后,使用分立的应用处理器和DSP(不管是作为独立组件还是作为系统级芯片的核心)会导致更大的物理封装,从而减少了产品中较大电池的可用内部面积。此外,整个系统中组件的增多会增加设备的整体电量消耗。
"无DSP"设计
有一种技术可改善VoWi-Fi设备电量消耗,即充分利用"无DSP"设计方法,在这种设计中,语音处理是在应用处理器中进行的。随着用于便携式用途的通用应用处理器的发展,它们已有足够的处理能力执行需进行大量计算的工作(如语音处理)以及其他的一般应用功能。在应用处理器上执行语音处理功能以及去掉DSP,可直接实现节能和减少物理封装体积。图1显示了无DSP的VoWi-Fi手机。
与VoWi-Fi设备电池供电、便携特性有关的考虑因素也必须应用于整个软件架构。为了在待机状态下尽可能地省电,在不进行处理时,系统必须关闭外部硬件以及处理器的电源。
在不通话时,设备只应执行非常少量的、不经常进行的工作。内嵌的操作系统和相关的应用程序应定期唤醒(时间间隔介于250 ms和500 ms之间)以检查有没有输入事件,如收到要求开始VoIP通话的SIP通话控制数据包。可能提高系统处理层次的其他事件包括用户按键盘上的按纽以启动通话。在这种情况下,硬件应设计为允许中断,以唤醒系统的适当部分并开始处理适当的工作。
允许对处理器时钟频率进行程序式控制的CPU子系统可被用来延长VoWi-Fi设备的电池寿命。通过让处理器以较慢的时钟频率运行以进行正常的MMI交互作用,然后突然提高处理器速度,提供最大的性能以在VoIP通话过程中进行语音处理,系统可持续地设法从电池腾出额外的待机和通话时间。单处理器、无DSP架构实际上使应用程序开发员可以更容易地实施程序式的处理器速度控制,因为他们无需担心系统中多个处理器之间可能发生的时钟同步问题。
从VoIP软件子系统的角度来看,必须小心不要假设系统中指定硬件资源的可用性,也不要锁定某一指定的资源而使其无法在长时间不需要使用时断电。VoIP软件的设计必须以这种"外部"控制观点为核心。
VoIP软件应设计为应用程序可以控制VoIP软件执行的时间(及其可访问的资源),使系统在任何特定的时间不需要某些硬件资源时关闭或中断它们。例如,当没有正在进行的通话时关闭麦克风和喇叭接口,将有助于延长电池寿命。如果这是通过简单的运行至完成模式来实现的,那么应用程序能够按需要在通话间隔时间内关闭系统的各个部件。
VoWi-Fi的前景
此处的设计考虑因素适用于单模、专用VoWi-Fi手机以及新兴的结合便携式和VoWi-Fi功能的"双模"手机。实际上,VoWi-Fi的增长预计将来自于承诺可在两种网络制式之间无缝切换的"双模"手机。
虽然部署VoWi-Fi电话将面临许多挑战,但适当地合并考虑以下因素可轻易克服这些挑战:选择VoIP编解码器以获得适当的带宽并实现质量最优化、使用支持802.11e的Wi-Fi网络以确保语音话务的优先级以及使用无DSP架构以延长VoWi-Fi手机的电池寿命。
阻碍VoWi-Fi手机迅速普及的一个重要因素可能是电池寿命。许多第一代设备的待机时间比大多数便携式电话的通话时间还要短。显然,要使VoWi-Fi手机为消费者所广泛采用,这些设备的电池寿命必须能够比得上目前的便携式、无绳或DECT电话的电池寿命。更复杂的问题是,用户已习惯便携式电话的小体积,这就在设备可使用的电池大小方面对OEM或ODM设置了限制。
设备中的Wi-Fi组件是VoWi-Fi手机中消耗最多电池电量的组件之一。虽然新一代Wi-Fi芯片的耗电量将大大减少,但VoWi-Fi手机中许多其他器件要共享有限的电量。例如,传统的DSP设计需要多个处理器或系统级芯片器件来执行所有的VoIP功能。
在这些设计中,一般的人机界面(MMI)以及VoIP通话控制功能使用传统的应用处理器(ARM、MIPS等),而DSP则用于语音到数据包到语音的转换。此方法在便携设备的设计中暴露出很多缺点。
最后,使用分立的应用处理器和DSP(不管是作为独立组件还是作为系统级芯片的核心)会导致更大的物理封装,从而减少了产品中较大电池的可用内部面积。此外,整个系统中组件的增多会增加设备的整体电量消耗。
"无DSP"设计
有一种技术可改善VoWi-Fi设备电量消耗,即充分利用"无DSP"设计方法,在这种设计中,语音处理是在应用处理器中进行的。随着用于便携式用途的通用应用处理器的发展,它们已有足够的处理能力执行需进行大量计算的工作(如语音处理)以及其他的一般应用功能。在应用处理器上执行语音处理功能以及去掉DSP,可直接实现节能和减少物理封装体积。图1显示了无DSP的VoWi-Fi手机。
与VoWi-Fi设备电池供电、便携特性有关的考虑因素也必须应用于整个软件架构。为了在待机状态下尽可能地省电,在不进行处理时,系统必须关闭外部硬件以及处理器的电源。
在不通话时,设备只应执行非常少量的、不经常进行的工作。内嵌的操作系统和相关的应用程序应定期唤醒(时间间隔介于250 ms和500 ms之间)以检查有没有输入事件,如收到要求开始VoIP通话的SIP通话控制数据包。可能提高系统处理层次的其他事件包括用户按键盘上的按纽以启动通话。在这种情况下,硬件应设计为允许中断,以唤醒系统的适当部分并开始处理适当的工作。
允许对处理器时钟频率进行程序式控制的CPU子系统可被用来延长VoWi-Fi设备的电池寿命。通过让处理器以较慢的时钟频率运行以进行正常的MMI交互作用,然后突然提高处理器速度,提供最大的性能以在VoIP通话过程中进行语音处理,系统可持续地设法从电池腾出额外的待机和通话时间。单处理器、无DSP架构实际上使应用程序开发员可以更容易地实施程序式的处理器速度控制,因为他们无需担心系统中多个处理器之间可能发生的时钟同步问题。
从VoIP软件子系统的角度来看,必须小心不要假设系统中指定硬件资源的可用性,也不要锁定某一指定的资源而使其无法在长时间不需要使用时断电。VoIP软件的设计必须以这种"外部"控制观点为核心。
VoIP软件应设计为应用程序可以控制VoIP软件执行的时间(及其可访问的资源),使系统在任何特定的时间不需要某些硬件资源时关闭或中断它们。例如,当没有正在进行的通话时关闭麦克风和喇叭接口,将有助于延长电池寿命。如果这是通过简单的运行至完成模式来实现的,那么应用程序能够按需要在通话间隔时间内关闭系统的各个部件。
VoWi-Fi的前景
此处的设计考虑因素适用于单模、专用VoWi-Fi手机以及新兴的结合便携式和VoWi-Fi功能的"双模"手机。实际上,VoWi-Fi的增长预计将来自于承诺可在两种网络制式之间无缝切换的"双模"手机。
虽然部署VoWi-Fi电话将面临许多挑战,但适当地合并考虑以下因素可轻易克服这些挑战:选择VoIP编解码器以获得适当的带宽并实现质量最优化、使用支持802.11e的Wi-Fi网络以确保语音话务的优先级以及使用无DSP架构以延长VoWi-Fi手机的电池寿命。
VoWi-Fi 相关文章:
- VoWi-Fi能给LTE时代的语音通信体验带来什么?(02-11)