超低电压能量收集器利用废热为无线传感器供电
散热器和 TEG 的热阻确定了 10oC总温差 (∆T) 的哪一部分存在于 TEG 的两端。假定热源 (RS) 的热阻可忽略不计,如果 TEG 的热阻 (RTEG) 为 4°C/W,散热器的热阻 (RHS) 也为 4°C/W,那么落在 TEG 上的 ∆T 仅为 5°C。
图 2:TEG 和散热器简单的热模型
由于较大的 TEG 表面积增大了,所以大型 TEG 比小型 TEG 热阻低,因此需要较大的散热器才有利。在受到尺寸或成本限制而必须使用相对较小的散热器的应用中,较小的 TEG 也许比大型 TEG 提供更多的输出功率。热阻等于或小于 TEG 热阻的散热器可最大限度地提高 TEG 上的温度差,因此能最大限度地提高电输出。
脉冲负载应用设计例子
由 TEG 供电的典型无线传感器应用如图 3 所示。在这个例子中,TEG 上至少有 4°C 的温差可用,因此选择 1:50 的变压器升压比,以实现最高的输出功率。
图 3:无线传感器应用例子
LTC3108 提供一个典型的无线传感器所需的多个输出。2.2V LDO 输出给微处理器供电,而 VOUT 利用 VS1 和 VS2 引脚设定到 3.3V,以给 RF 发送器供电。开关 VOUT (VOUT2) 由微处理器控制,以仅在需要时给 3.3V 传感器供电。当 VOUT 达到稳定值的 93% 时,PGOOD 输出向微处理器发出指示信号。为了在输入电压不存在时保持工作,在后台从 VSTORE 引脚给 0.1F 存储电容器充电。这个电容器可以充电至高达 VAUX 并联稳压器的 5.25V 箝位电压。如果失去输入电压源,那么就自动由存储电容器提供能量,以给该 IC 供电,并保持 VLDO 和 VOUT 的稳定。
根据以下公式确定 COUT 存储电容器的大小,以在 10ms 的持续时间内支持 15mA 的总负载脉冲,从而在负载脉冲期间允许 VOUT 有 0.33V 的下降。请注意,IPULSE 包括 VLDO 和 VOUT2 以及 VOUT 上的负载,但充电电流未包括在内,因为与负载相比,它可能非常小。
考虑到这些要求,COUT 必须至少为 454µF,因此选择了一个 470µF 的电容器。
采用所示 TEG (以及大小合适的散热器),在 ∆T 为 5°K 时工作,那么 LTC3108 在 3.3V 时提供的平均充电电流约为 560µA。用这些数据,我们可以计算出,首次给 VOUT 存储电容器充电需要花多长时间,以及该电路能以多大频度发送脉冲。假定充电阶段 VLDO 和 VOUT 上的负载非常小,那么 VOUT 最初的充电时间为:
假定发送脉冲之间的负载电流非常小,那么一种简单估计最大发送速率的方法是,用从 LTC3108 可获得的平均输出功率 (在本例情况下为 3.3V • 560µA = 1.85mW) 除以脉冲期间所需功率 (在本例情况下为 3.3V • 15mA = 49.5mW)。收集器可以支持的最大占空比为 1.85mW/49.5mW = 0.037 或 3.7%。因此最大脉冲发送速率为 0.01/0.037 = 0.27 秒或约为 3.7Hz。
请注意,如果平均负载电流 (如发送速率所决定的那样) 是收集器所能支持的最大电流,那么会没有剩余的收集能量给存储电容器充电。因此,在这个例子中,发送速率设定为 2Hz,从而留出几乎一半的可用能量给存储电容器充电。VSTORE 电容器提供的存储时间利用以下公式计算:
上述计算包括 LTC3108 所需的 6uA 静态电流,而且假定发送脉冲之间的负载极小。一旦存储电容器达到满充电状态,它就能以 2Hz 的发送速率支持负载 637 秒,或支持总共 1274 个发送脉冲。
热量收集应用需要自动极性
有些热量收集应用 (如无线 HVAC 传感器或地热供电的传感器) 要求电源管理器不仅能以非常低的输入电压工作,而且能以任一极性工作,因为 TEG 上的 ∆T 的极性可能改变。
LTC3109 是惟一适合克服这种挑战的器件。LTC3109 运用两个具 1:100 升压比的变压器,能以低至 ±30mV 的输入电压工作。LTC3109 与 LTC3108 的功能相同,包括一个 LDO、一个数字可编程的输出电压、一个电源良好输出、一个开关输出和一个能量存储输出。LTC3109 采用 4mm x 4mm 20 引脚 QFN 和 20 引脚 SSOP 封装。图 4 显示了 LTC3109 在自动极性应用中的一个典型例子。如图 5 所示,该转换器的输出电流随 VIN 变化的曲线说明,该器件在任一极性的输入电压时,都能同样良好地工作。
无线传感器 相关文章:
- 飞思卡尔ZSTAR3无线传感器参考设计(07-04)
- 应用于无线传感器网络2. 4 GHz的低噪声放大器设计(03-07)