基于Zigbee的远程家庭监护系统的应用研究
时间:04-08
来源:电子技术应用
点击:
2 Zigbee家庭无线网络监护系统硬件结构
对于传感器节点,需要具有小尺寸、低功耗、适应性强的特点。根据Zigbee协议标准,Zigbee设备发射输出为0~3.6dbm,通信距离为30~60m,能够检测能量和链路质量。根据这些检测结果,可自动调整设备的发射功率,在保证通信链路质量的条件下,最小地消耗设备能量。目前市场上的无线发射,接收芯片典型的有Chipcon公司和Freeseale公司的产品。本文选用Freescale的13193作为系统的射频芯片。此芯片可以结合Freescale公司的控制器GT60一起组成低功耗的无线模块。无线传感器节点的结构框图如图3所示。
由于无线传感器具有随身携带要求,因此采用纽扣电池。脉搏传感器采用PVDF压电薄膜,其输出阻抗很大,由调理电路实现信号放大和滤波。设计时考虑到高频电路对传感器信号的干扰,传感器调理电路与高频发射接收部分分开设计。天线设计是无线模块设计的关键,直接影响到传感器节点的通信质量和通信距离,可以参照常用的2.4GHz天线的设计方法。本设计采用偶极子微带PCB板天线,所有铜箔的走线均采用微带传输线的原理,以减少反射引起的传输损耗,获得较大的输出功率和较高的接收灵敏度。
家庭网关负责家庭无线传感器网络的控制和管理,实现信息的融合处理,并将信息传输到互联网。家庭网关的数据传输和运算量较大,并且可以采用外部电力作为电源供应,因此采用具有较强的信息处理能力和网络功能的ARM9系列作为控制器,本文采用三星的S3C2410作为控制器。无线发射芯片采用Freeseale的MCl3192,无线控制器芯片采用GT60,两者通过SPI口通信。无线网关的硬件结构如图4所示。
3 Zigbee无线网络软件系统
Zigbee协议栈由一系列分层结构组成,每一层为上一层提供服务。数据实体提供数据传输服务,管理实体提供其他功能服务。每种服务实体通过服务接入点(AP)为上层提供接口。基于Zigtme网络软件分层结构如图5所示。
PHY层和MAC层由IEEE 802.15.4标准组制定。物理层定义了物理无线信道和MAC子层之间的接口,提供物理层数据服务和物理层管理服务。物理层数据服务从无线信道上收发数据。物理管理层维护一个由物理层相关数据组成的数据库。
Zigbee联盟基于802.15.4标准提供了网络层和应用支持层及应用层框架。Zigbee网络层提供加入和离开网络机制、对数据进行加密以及帧路由等功能。路由协议负责将数据分组从源节点通过网络转发到目的节点,主要完成两个功能:(1)寻找源节点和目的节点间的优化路径;(2)将数据分组沿着优化路径转发。为了能够高效利用能量,减少通信量,Zigbee网络允许树形路由选择,即树形结构选址。有了树形路由选择,设备不必保存占有庞大内存的路由表或者进行额外的空中下载操作来发现路径,从而减小了网络流量。为避免错误信息超过一定长度的过渡路由而产生额外的流量,Zigbee路由允许路由器去发现捷径。
路由算法采用AODV(Ad hoc On Demand Distance Vetor)算法。每个路由器维护一张路由表,并定期与其邻居路由器交换路由信息,根据最小路由矢量更新自己的路由表。应用层框架定义监护网络节点协议。
无线网关连接内部无线网络与外部有线以太网,网关设计模型如图6所示。网关采用ARM9系列实现,运行Linux操作系统。在Zigbee协议帧的基础上,建立无线阿关的通信协议,包括设备编号、数据流方向、数据信息等。开机上电后.系统自检,硬件初始化,与远程监护服务器连接后进入数据流中继服务,实现数据协议的转换等功能。远程服务器接受连接后,随时接收传输的数据.并根据需要分类保存到数据库服务器。
4 实验结果分析
根据设计的zigbee无线监护网络平台,对人体随身携带的脉搏压力信号进行连续采集,并在监护服务器上实时显示。采用8位A/D转换器,数据采样频率150Hz。有线网络环境为校园局域网,采集数据的波形如图7所示。图8为投有使用网络传输,直接经过计算机采集的脉搏信号的波形曲线,采样频率为150Hz。
通过对比图7和图8可以看出,经过家庭监护网络采集到的脉搏数据信号波形基本没有变形,只是网络的延时使信号产生了微小的抖动。当系统接入互联网,延时会加大,抖动更加明显。通过增加缓冲区等方法可以减小影响网络延时对实时信号采集。另一方面,由于人体的活动也会给信号带来很大的干扰.可进一步采取滤波等措施减小干扰。
Zigbee网络是低功耗、低成本、高可靠性的无线传感器网络,其在无线家庭监护中有着广阔的应用前景。本文在研究Zigbee无线传感器网络的基础上,提出了基于Zigbee协议的家庭无线监护系统的构成方案,并在由此方案构建的无线网络平台上进行了脉搏信号的监护测试。实验验证了通过该系统进行远程无线家庭监护的可行性。
对于传感器节点,需要具有小尺寸、低功耗、适应性强的特点。根据Zigbee协议标准,Zigbee设备发射输出为0~3.6dbm,通信距离为30~60m,能够检测能量和链路质量。根据这些检测结果,可自动调整设备的发射功率,在保证通信链路质量的条件下,最小地消耗设备能量。目前市场上的无线发射,接收芯片典型的有Chipcon公司和Freeseale公司的产品。本文选用Freescale的13193作为系统的射频芯片。此芯片可以结合Freescale公司的控制器GT60一起组成低功耗的无线模块。无线传感器节点的结构框图如图3所示。
由于无线传感器具有随身携带要求,因此采用纽扣电池。脉搏传感器采用PVDF压电薄膜,其输出阻抗很大,由调理电路实现信号放大和滤波。设计时考虑到高频电路对传感器信号的干扰,传感器调理电路与高频发射接收部分分开设计。天线设计是无线模块设计的关键,直接影响到传感器节点的通信质量和通信距离,可以参照常用的2.4GHz天线的设计方法。本设计采用偶极子微带PCB板天线,所有铜箔的走线均采用微带传输线的原理,以减少反射引起的传输损耗,获得较大的输出功率和较高的接收灵敏度。
家庭网关负责家庭无线传感器网络的控制和管理,实现信息的融合处理,并将信息传输到互联网。家庭网关的数据传输和运算量较大,并且可以采用外部电力作为电源供应,因此采用具有较强的信息处理能力和网络功能的ARM9系列作为控制器,本文采用三星的S3C2410作为控制器。无线发射芯片采用Freeseale的MCl3192,无线控制器芯片采用GT60,两者通过SPI口通信。无线网关的硬件结构如图4所示。
3 Zigbee无线网络软件系统
Zigbee协议栈由一系列分层结构组成,每一层为上一层提供服务。数据实体提供数据传输服务,管理实体提供其他功能服务。每种服务实体通过服务接入点(AP)为上层提供接口。基于Zigtme网络软件分层结构如图5所示。
PHY层和MAC层由IEEE 802.15.4标准组制定。物理层定义了物理无线信道和MAC子层之间的接口,提供物理层数据服务和物理层管理服务。物理层数据服务从无线信道上收发数据。物理管理层维护一个由物理层相关数据组成的数据库。
Zigbee联盟基于802.15.4标准提供了网络层和应用支持层及应用层框架。Zigbee网络层提供加入和离开网络机制、对数据进行加密以及帧路由等功能。路由协议负责将数据分组从源节点通过网络转发到目的节点,主要完成两个功能:(1)寻找源节点和目的节点间的优化路径;(2)将数据分组沿着优化路径转发。为了能够高效利用能量,减少通信量,Zigbee网络允许树形路由选择,即树形结构选址。有了树形路由选择,设备不必保存占有庞大内存的路由表或者进行额外的空中下载操作来发现路径,从而减小了网络流量。为避免错误信息超过一定长度的过渡路由而产生额外的流量,Zigbee路由允许路由器去发现捷径。
路由算法采用AODV(Ad hoc On Demand Distance Vetor)算法。每个路由器维护一张路由表,并定期与其邻居路由器交换路由信息,根据最小路由矢量更新自己的路由表。应用层框架定义监护网络节点协议。
无线网关连接内部无线网络与外部有线以太网,网关设计模型如图6所示。网关采用ARM9系列实现,运行Linux操作系统。在Zigbee协议帧的基础上,建立无线阿关的通信协议,包括设备编号、数据流方向、数据信息等。开机上电后.系统自检,硬件初始化,与远程监护服务器连接后进入数据流中继服务,实现数据协议的转换等功能。远程服务器接受连接后,随时接收传输的数据.并根据需要分类保存到数据库服务器。
4 实验结果分析
根据设计的zigbee无线监护网络平台,对人体随身携带的脉搏压力信号进行连续采集,并在监护服务器上实时显示。采用8位A/D转换器,数据采样频率150Hz。有线网络环境为校园局域网,采集数据的波形如图7所示。图8为投有使用网络传输,直接经过计算机采集的脉搏信号的波形曲线,采样频率为150Hz。
通过对比图7和图8可以看出,经过家庭监护网络采集到的脉搏数据信号波形基本没有变形,只是网络的延时使信号产生了微小的抖动。当系统接入互联网,延时会加大,抖动更加明显。通过增加缓冲区等方法可以减小影响网络延时对实时信号采集。另一方面,由于人体的活动也会给信号带来很大的干扰.可进一步采取滤波等措施减小干扰。
Zigbee网络是低功耗、低成本、高可靠性的无线传感器网络,其在无线家庭监护中有着广阔的应用前景。本文在研究Zigbee无线传感器网络的基础上,提出了基于Zigbee协议的家庭无线监护系统的构成方案,并在由此方案构建的无线网络平台上进行了脉搏信号的监护测试。实验验证了通过该系统进行远程无线家庭监护的可行性。
- 无线传感器网络的服务质量保障技术(10-16)
- 网络自组织通信模式和技术研究综述(10-26)
- 一种基于无线传感器网络的滑坡监测系统设计(07-04)
- 家庭节能无线传感器网络系统的设计(07-02)
- 基于IEEE802.15.4 无线传感器节点软件设计(07-02)
- 如何选择合适的无线传感器技术(07-02)