微波EDA网,见证研发工程师的成长!
首页 > 通信和网络 > 通信网络技术文库 > 蓝牙散射网网间通信问题的研究

蓝牙散射网网间通信问题的研究

时间:04-10 来源:通信市场 点击:

散射网网间通信的问题

  散射网是由多个微微网在时间和空间上相互重叠而构成的更加复杂的网络拓扑结构。散射网中的蓝牙设备既可以是某个微微网的从设备,也可以是另一个微微网的主设备。每个微微网的跳频序列各自独立,互不相关,同一微微网的所有设备跳频序列同步,通过时分复用技术,一个蓝牙设备便可以同时与几个不同的微微网保持同步。由于散射网内的通信拓扑结构(通路和节点数的不同),微微网内(intra piconet)、网间(inter piconet)切换的顺序,有效的数据流分配(即轮询算法)等各种因素影响,蓝牙利益集团(SIG)还没有制定一个协议标准来规范散射网的建立和保证最小服务质量(Qos)的通信。

  散射网通信问题的症结

  散射网通信面临两个急待解决的问题:

  1.在复杂的网络拓扑结构,如何使散射网内的两个蓝牙设备之间迅速建立通信路径。

  2.如何建立一种最佳的网间节点通信算法,从而减少因网间切换延迟造成的数据流传输效率的降低。

  通过对国内外相关最新文献的研究发现,在散射网网间通信问题的研究领域,这两方面的问题往往是独立研究的。也就是在散射网拓扑结构的研究中不能顾虑到网间节点快速通信及计算量的要求。而网间节点通信算法也提出了各种各样的算法,但它们也基本不考虑实际的网络拓扑结构。

  为此本文提出了一种基于利用自定义路径的散射网的随机拓扑结构,并整合了网间自适应调度通信算法,从而提供了一种真正意义上的散射网内的无缝连接通信解决方案,为实现智能的个人局域网具有一定的借鉴意义。

  自定义路径的散射网拓扑结构

  由于蓝牙接入点在时间和放置地点不具有规律性,因此蓝牙设备在散射网内的通信非常复杂。架构什么样的散射网,以保证网间通信顺畅成了研究的方向。国外对散射网组网提出过不同的理论,但都存在不同诸多问题。困扰的主要问题是路径的选择。目前主要可为分两种路搜索模式,一种为地址表路径搜索模式,另一种为需求搜索模式。这两种方式要么需要通信节点具有庞大的记忆体,要么在网内发送广播信息,会造成路径确认延迟或网内泛滥的询问路径信息。为此,在这里提出一种基于蓝牙设备地址的组网模式。它根据设备地址大小的不同,确认每个节点的网内通信范围,当目的节点需要得到发送节点传送的信息时,发送节点会判定目的节点是否在自己的通信范围之内,如果没有,则上传信息给主节点,由主节点传给相应的分节点(此分节点的通信范围应涵盖目的节点的MAC地址),直到找到目的节点,这种方法称为自定义路径,它基本不会增加节点记忆体开销,并且路径方式是唯一确定的,同时这种散射网网的架构可以允许新的微微网或节点设备的加入。通过研究发现该组网方式结构清晰,定义明确,搜索路径快捷。

网间自适应调度算法

  在自定义路径的散射网拓扑结构的基础之上,为了提高网间通信的速率,需要建立网间切换的通信机制。研究发现,许多算法经常需要对蓝牙协议做较大的改进和扩充后才能实现。而利用蓝牙协议中的监听模式却可以为微微网间的调度算法提供了一种灵活的方式,并且无须更改协议,这种方法称为网间自适应调度算法,它是监控各个链路上的流量并获得流量变化的数据。

在分散网中,有些节点是多个微微网的成员,是不同微微网中的从节点或者主节点,这些节点称为PMP(participant in multiple piconets)节点。它们采用时分复用方式分别参与到每个所连接的微微网中,数据才能在微微网间传递。

  蓝牙协议中的监听模式为微微网间调试算法提供了一个灵活的方式。如图所示,从节点每间隔Tsniff处于监听状态,这时主从节点间可以传输数据,无论从节点收到属于自己的数据包与否,监听状态都维持Tsniffattempt个时隙。如果在监听状态中收到传给自己的数据包时,从节点还要继续在下面的Tsnifftimeout个时隙和剩余的Tsniffattempt个时隙中较大的时隙里处于监听状态,其它时间从节点可以处于休眠状态,这时设备处于低能耗模式,设备间不能传输数据。Tsniff为监听周期,Tsniffattempt为监听时隙。

  网间自适应调度算法是监控各个链路上的流量并获得流量变化数据。根据这些数据调整监听模式的关键参数,实时改变节点在各个链路上的监听时隙分配比例,反映链路上的流量变化,从而有效提高吞吐量,降低时间延迟。目前,蓝牙协议中监听模式对微微网间调度的支持有些不方便和不明确的地方。处于监听模式后不能改变监听模式的参数。只有在退出监听模式后再进入监听模式才可能使新的参数生效。监听初始时隙由主节点决定,这使连接多个微微网的从节点上的多个链路的监听时隙可能严重相互重叠,使从节点不能很好地参与到其它的微微网中。因此对监听模式的操作方式需要作一些改进:进入监听模式以后,主节点或者从节点可以改变监听参数,不需要退出监听模式。主、从节点之间协商监听参数并在下一个时隙后开始使用新的监听参数。监听初始时隙由从节点决定,从节点根据所连接的微微网个数和监听参数使分配在各个链路上的监听时间最大限度地不发生重叠。

  1. 数据流量变化的监控

  根据物理链路的数据流量,定义物理链路的繁忙程度B,简称为忙因子,取值范围从0.0~1.0,值越大越繁忙。当PMP节点处于监听模式时,监听时隙和监听周期的比值应该接近于B值,因为能传输数据的监听时隙所占的比例应该与B成正比,B值越大,数据流量就越大,所需的监听时隙就应越长,反之亦然。则B与Tsniff和Tsniffattempt应该有关系:B∝Tsniffattempt/Tsniff 。已知B和Tsniff值,就可以计算出Tsniffattempt值。为了避免因为B值的变化而产生相应监听模式参数的不断变化,只有当B值发生较大变化时,监听时隙和监听周期的值才作适当的放大或者缩小。

  2. 最佳监听时隙分配计算

  为实现分配在各微微网上的监听时间最大限度地不重叠,需要进行一些额外的简单计算。假设某个节点连接N个微微网,它在每个微微网中都处于监听模式,监听模式的参数分别是Tisniffattempt和Tisniff,其中1≤i≤N。Tisniffattempt / Tisniff 为节点在第i个微微网中的监听时间比例,因此Tisniffattempt和Tisniff 参数必须满足∑Tisniffattempt / Tisniff ≤1(1≤i≤N )。这时,如果节点取一个统一的监听间隔Tsniff,再将各个微微网的监听时隙分配到这个监听间隔中,使它们不重叠,实现监听时隙最大限度地不重叠。为了减少节点计算量,在实际应用中,假定Tisniff 不是连续取值,而是2的指数关系,即 Tisniff =2j(j>1)。这时Tsniff 的取值为{ Tisniff }中的最大值。而Tisniffattempt 只需乘以某个2的倍数即可,使计算量大大降低了。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top