3G LTE简介
出最佳调整。
为了获得正确无误的数据传输,LTE仍采用前向纠错编码(FEC)和自动重复请求(ARQ)结合的差错控制,即混合ARQ(HARQ)。HARQ应用增量冗余(IR)的重传策略,而chase合并(CC)实际上是IR的一种特例。为了易于实现和避免浪费等待反馈消息的时间,LTE仍然选择N进程并行的停等协议(SAW),在接收端通过重排序功能对多个进程接收的数据进行整理。HARQ在重传时刻上可以分为同步HARQ和异步HARQ。同步HARQ意味着重传数据必须在UE确知的时间即刻发送,这样就不需要附带HARQ处理序列号,比如子帧号。而异步HARQ则可以在任何时刻重传数据块。从是否改变传输特征来分,HARQ又可以分为自适应和非自适应两种。目前来看,LTE倾向于采用自适应的、异步HARQ方案。
与CDMA不同,OFDMA无法通过扩频方式消除小区间的干扰。为了提高频谱效率,也不能简单地采用如GSM中复用因子为3或7的频率复用方式。因此,在LTE中,非常关注小区间干扰消减技术。小区间干扰消减途径有3种,即干扰随机化、干扰消除和干扰协调/避免。另外,在基站采用波束成形天线的解决方案也可以看成是下行小区间干扰消减的通用方法。干扰随机化可以采用如小区专属的加扰和小区专属的交织,后者即为大家所知的交织多址(IDMA);此外,还可采用跳频方式。干扰消除则讨论了采取如依靠UE多天线接收的空间抑制和基于检测/相减的消除方法。而干扰协调/避免则普遍采取一种在小区间以相互协调来限制下行资源的分配方法,如通过对相邻小区的时-频域资源和发射功率分配的限制,获得在信噪比、小区边界数据速率和覆盖方面的性能提升。
E-UTRAN架构
E-UTRAN与UTRAN架构完全不同,去掉了RNC这个网络设备,只保留了Node B网元,目的是简化网络架构和降低时延。RNC功能被分散到了演进的Node B(E-Node B)和接入网关(aGW)中。目前并没有说明aGW是位于E-UTRAN还是SAE(系统架构演进)中。但从LTE设计初衷来看,应该只采用由E-Node B构成的单层结构,而aGW因为包含了原SGSN功能,还是归属为SAE的边界节点,只不过与E-UTRA相关的部分用户面和控制面的功能在LTE中定义。
E-UTRAN结构中包含了若干个E-Node B(eNB),提供了终止于UE的E-UTRA用户面(PHY/MAC)和控制面(RRC)协议。E-Node B之间采用网格(mesh)方式互连,E-Node B与aGW之间的接口称为S1接口。
E-UTRAN的协议栈结构还是与URTAN一样分为用户面和控制面,但简化了很多。比如去掉了RLC层,该实体功能被并入MAC层,PDCP功能在网络侧被移到了aGW中。控制面RRC功能移入E-Node B中,并在网络侧终止于E-Node B。
与UTRAN相比,E-UTRAN在信道结构上做了很大的简化,虽然还没有最终确定,但从目前讨论的结果来看,传输信道将从原来的9个减为现在的5个,逻辑信道从原来的10个减为现在的7个。上/下行共享信道(DL/UL-SCH)用于承载用户的控制信令和业务数据,取代了R6中的DCH、FACH、HS-DSCH和E-DCH信道。MCH只给多小区广播/多播业务提供数据承载,而单小区的广播/多播业务数据则在SCH信道上承载。在现阶段,LTE尚未决定是否单独定义映射多播业务的逻辑信道,如继承R6中单独的MCCH和MTCH。
无线资源控制(RRC)状态在LTE中也简化了许多,将UTMS中的RRC状态和PMM状态合并为一个状态集,并且只包含RRC_IDLE、RRC_ACTIVE和RRC_DETACHED这3种状态。在aGW网元中,UE的上下文必须区分这3种状态。而在E-Node B中只保留RRC_ACTIVE状态的UE上下文,即合并了原先的CELL_DCH、CELL_FACH、CELL_PCH和URA_PCH多种状态。
结束语
除了对无线接入网演进的研究,3GPP还正在进行系统架构方面的演进工作,并将其定义为SAE。目前,一些发起并参与LTE/SAE标准制定和技术研究工作的3GPP成员,比如ALCATEL等设备厂商,正在积极研究和开发符合3G LTE/SAE技术标准的系统和设备,目标是在保证技术和系统性能领先的同时,最大程度地利用并兼容现有的系统平台,保持系统的平滑演进,以提供最优的无线通信解决方案。
- 3GPP LTE/SAE网络体系结构和标准化进展(04-14)
- LTE——3G技术的未来发展(02-20)
- TD向LTE TDD平滑演进(04-21)
- LTE技术热点分析(09-19)